Tag Multi-Domain Battle

Aerial Drone Tactics, 2025-2050

[Image: War On The Rocks.]

My previous post outlined the potential advantages and limitations of current and future drone technology. The real utility of drones in future warfare may lie in a tactic that is both quite old and new, swarming. “‘This [drone swarm concept] goes all the way back to the tactics of Attila the Hun,’ says Randall Steeb, senior engineer at the Rand Corporation in the US. ‘A light attack force that can defeat more powerful and sophisticated opponents. They come out of nowhere, attack from all sides and then disappear, over and over.'”

In order to be effective, Mr. Steeb’s concept would require drones to be able to speed away from their adversary, or be able to hide. The Huns are described “as preferring to defeat their enemies by deceit, surprise attacks, and cutting off supplies. The Huns brought large numbers of horses to use as replacements and to give the impression of a larger army on campaign.” Also, prior to problems caused to the Roman Empire by the Huns under Attila (~400 CE), another group of people, the Scythians, used similar tactics much earlier, as mentioned by Herodotus, (~800 BCE). “With great mobility, the Scythians could absorb the attacks of more cumbersome foot soldiers and cavalry, just retreating into the steppes. Such tactics wore down their enemies, making them easier to defeat.” These tactics were also used by the Parthians, resulted in the Roman defeat under Crassis at the Battle of Carrahe, 53 BCE. Clearly, maneuver is as old as warfare itself.

Indeed, others have their own ancient analogies.

Today, fighter pilots approach warfare like a questing medieval knight. They search for opponents with similar capabilities and defeat them by using technologically superior equipment or better application of individual tactics and techniques. For decades, leading air forces nurtured this dynamic by developing expensive, manned air superiority fighters. This will all soon change. Advances in unmanned combat aerial vehicles (UCAVs) will turn fighter pilots from noble combatants to small-unit leaders and drive the development of new aerial combined arms tactics.

Drone Swarms: A Game Changer?

We can see that the new technologies come along, and they enable a new look at warfare, and often enable a new implementation of ancient tactics. There are some who claim that this changes the game, and indeed may change the fundamental nature of war.

Peter Singer, an expert on future warfare at the New America think-tank, is in no doubt. ‘What we have is a series of technologies that change the game. They’re not science fiction. They raise new questions. What’s possible? What’s proper?’ Mr. Singer is talking about artificial intelligence, machine learning, robotics and big-data analytics. Together they will produce systems and weapons with varying degrees of autonomy, from being able to work under human supervision to ‘thinking’ for themselves. The most decisive factor on the battlefield of the future may be the quality of each side’s algorithms. Combat may speed up so much that humans can no longer keep up. Frank Hoffman, a fellow of the National Defense University who coined the term ‘hybrid warfare’, believes that these new technologies have the potential not just to change the character of war but even possibly its supposedly immutable nature as a contest of wills. For the first time, the human factors that have defined success in war, ‘will, fear, decision-making and even the human spark of genius, may be less evident,’ he says.” (emphasis added).

Drones are highly capable, and with increasing autonomy, they themselves may be immune to fear. Technology has been progressing step by step to alter the character of war. Think of the Roman soldier and his personal experience in warfare up close vs. the modern sniper. They each have a different experience in warfare, and fear manifests itself in different ways. Unless we create and deploy full autonomous systems, with no human in or on the loop, there will be an opportunity for fear and confusion by the human mind to creep into martial matters. An indeed, with so much new technology, friction of some sort is almost assured.

I’m not alone in this assessment. Secretary of Defense James Mattis has said “You go all the way back to Thucydides who wrote the first history and it was of a war and he said it’s fear and honor and interest and those continue to this day. The fundamental nature of war is unchanging. War is a human social phenomenon.”

Swarming and Information Dominance

Indeed, the notion of the importance of information dominance plays upon one of the most important fundamental aspects of warfare: surprise. There are many synonyms for surprise, one of the most popular these days is situational awareness (SA). In a recent assessment of trends in air-to-air combat for the Center for Strategic and Budgetary Assessments (CSBA), Dr. John Stillion described the impact of SA.

Aerial combat over the past two decades, though relatively rare, continues to demonstrate the importance of superior SA. The building blocks, however, of superior SA, information acquisition and information denial, seem to be increasingly associated with sensors, signature reduction, and networks. Looking forward, these changes have greatly increased the proportion of BVR [Beyond Visual Range] engagements and likely reduced the utility of traditional fighter aircraft attributes, such as speed and maneuverability, in aerial combat. At the same time, they seem to have increased the importance of other attributes.

Stillion, famous for his RAND briefing on the F-35, proposes an interesting concept of operations for air-to-air combat, centered on larger aircraft with bigger sensor apertures, and subsonic UCAS fighters in the “front line.” He’s got a good video to illustrate how this concept would work against an adversary.

[I]t is important to acknowledge that all of the foregoing discussion is based on certain assumptions plus analysis of past trends, and the future of aerial combat might continue to belong to fast, agile aircraft. The alternative vision of future aerial combat presented in Chapter 5 relies heavily on robust LoS [Line of Sight] data links to enable widely distributed aircraft to efficiently share information and act in concert to achieve superior SA and combat effectiveness. Should the links be degraded or denied, the concept put forward here would be difficult or impossible to implement.

Therefore, in the near term, one of the most important capabilities to enable is a secure battle network. This will be required for remotely piloted and autonomous system alike, and this will be the foundation of information dominance – the acquisition of information for use by friendly forces, and the denial of information to an adversary.

Air Power and Drones, 2025-2050

[Credit: Financial Times]

In the recently issued 2018 National Defense Strategy, the United States acknowledged that “long-term strategic competitions with China and Russia are the principal priorities for the Department [of Defense], and require both increased and sustained investment, because of the magnitude of the threats they pose to U.S. security and prosperity today, and the potential for those threats to increase in the future.”

The strategy statement lists technologies that will be focused upon:

The drive to develop new technologies is relentless, expanding to more actors with lower barriers of entry, and moving at accelerating speed. New technologies include advanced computing, “big data” analytics, artificial intelligence, autonomy, robotics, directed energy, hypersonics, and biotechnology— the very technologies that ensure we will be able to fight and win the wars of the future… The Department will invest broadly in military application of autonomy, artificial intelligence, and machine learning, including rapid application of commercial breakthroughs, to gain competitive military advantages.” (emphasis added).

Autonomy, robotics, artificial intelligence and machine learning…these are all related to the concept of “drone swarms.” TDI has reported previously on the idea of drone swarms on land. There is indeed promise in many domains of warfare for such technology. In testimony to the Senate Armed Services Committee on the future of warfare, Mr Bryan Clark of the Center for Strategic and Budgetary Assessments argued that “America should apply new technologies to four main areas of warfare: undersea, strike, air and electromagnetic.”

Drones have certainly transformed the way that the U.S. wages war from the air. The Central Intelligence Agency (CIA) innovated, deployed and fired weapons from drones first against the Taliban in Afghanistan, less than one month after the 9/11 attacks against the U.S. homeland. Most drones today are airborne, partly because it is generally easier to navigate in the air than it is on the land, due to fewer obstacles and more uniform and predictable terrain. The same is largely true of the oceans, at least the blue water parts.

Aerial Drones and Artificial Intelligence

It is important to note that the drones in active use today by the U.S. military are actually remotely piloted Unmanned Aerial Vehicles (UAVs). With the ability to fire missiles since 2001, one could argue that these crossed the threshold into Unmanned Combat Aerial Vehicles (UCAVs), but nonetheless, they have a pilot—typically a U.S. Air Force (USAF) member, who would very much like to be flying an F-16, rather than sitting in a shipping container in the desert somewhere safe, piloting a UAV in a distant theater of war.

Given these morale challenges, work on autonomy is clearly underway. Let’s look at a forecast from The Economist, which follows the development of artificial intelligence (AI) in both the commercial and military realms.

A distinction needs to be made between “narrow” AI, which allows a machine to carry out a specific task much better than a human could, and “general” AI, which has far broader applications. Narrow AI is already in wide use for civilian tasks such as search and translation, spam filters, autonomous vehicles, high-frequency stock trading and chess-playing computers… General AI may still be at least 20 years off. A general AI machine should be able to carry out almost any intellectual task that a human is capable of.” (emphasis added)

Thus, it is reasonable to assume that the U.S. military (or others) will not field a fully automated drone, capable of prosecuting a battle without human assistance, until roughly 2038. This means that in the meantime, a human will be somewhere “in” or “on” the loop, making at least some of the decisions, especially those involving deadly force.

[Credit: The Economist]
Future Aerial Drone Roles and Missions

The CIA’s initial generation of UAVs was armed in an ad-hoc fashion; further innovation was spurred by the drive to seek out and destroy the 9/11 perpetrators. These early vehicles were designed for intelligence, reconnaissance, and surveillance (ISR) missions. In this role, drones have some big advantages over manned aircraft, including the ability to loiter for long periods. They are not quick, not very maneuverable, and as such are suited to operations in permissive airspace.

The development of UCAVs has allowed their integration into strike (air-to-ground) and air superiority (air-to-air) missions in contested airspace. UCAV strike missions could target and destroy land and sea nodes in command, control, communications, computers, intelligence, surveillance and reconnaissance (C4ISR) networks in an attempt to establish “information dominance.” They might also be targeted against assets like surface to air missiles and radars, part of an adversary anti-access/area denial (A2/AD) capability.

Given the sophistication of Russian and Chinese A2/AD networks and air forces, some focus should be placed upon developing more capable and advanced drones required to defeat these challenges. One example comes from Kratos, a drone maker, and reported on in Popular Science.

Concept art for Mako combat drone. Based on the existing BQM-167 aerial target, this drone can maneuver at forces that could kill a human pilot [Image courtesy of Kratos/Popular Science]

The Mako drone pictured above has much higher performance than some other visions of future drone swarms, which look more like paper airplanes. Given their size and numbers, they might be difficult to shoot down entirely, and this might be able to operate reasonably well within contested airspace. But, they’re not well suited for air-to-air combat, as they will not have the weapons or the speed necessary to engage with current manned aircraft in use with potential enemy air forces. Left unchecked, an adversary’s current fighters and bombers could easily avoid these types of drones and prosecute their own attacks on vital systems, installations and facilities.

The real utility of drones may lie in the unique tactic for which they are suited, swarming. More on that in my next post.

Attrition In Future Land Combat

Soldiers with Battery C, 1st Battalion, 82nd Field Artillery Regiment, 1st Brigade Combat Team, 1st Cavalry Division maneuver their Paladins through Hohenfels Training Area, Oct. 26. Photo Credit: Capt. John Farmer, 1st Brigade Combat Team, 1st Cav

[This post was originally published on June 9, 2017]

Last autumn, U.S. Army Chief of Staff General Mark Milley asserted that “we are on the cusp of a fundamental change in the character of warfare, and specifically ground warfare. It will be highly lethal, very highly lethal, unlike anything our Army has experienced, at least since World War II.” He made these comments while describing the Army’s evolving Multi-Domain Battle concept for waging future combat against peer or near-peer adversaries.

How lethal will combat on future battlefields be? Forecasting the future is, of course, an undertaking fraught with uncertainties. Milley’s comments undoubtedly reflect the Army’s best guesses about the likely impact of new weapons systems of greater lethality and accuracy, as well as improved capabilities for acquiring targets. Many observers have been closely watching the use of such weapons on the battlefield in the Ukraine. The spectacular success of the Zelenopillya rocket strike in 2014 was a convincing display of the lethality of long-range precision strike capabilities.

It is possible that ground combat attrition in the future between peer or near-peer combatants may be comparable to the U.S. experience in World War II (although there were considerable differences between the experiences of the various belligerents). Combat losses could be heavier. It certainly seems likely that they would be higher than those experienced by U.S. forces in recent counterinsurgency operations.

Unfortunately, the U.S. Defense Department has demonstrated a tenuous understanding of the phenomenon of combat attrition. Despite wildly inaccurate estimates for combat losses in the 1991 Gulf War, only modest effort has been made since then to improve understanding of the relationship between combat and casualties. The U.S. Army currently does not have either an approved tool or a formal methodology for casualty estimation.

Historical Trends in Combat Attrition

Trevor Dupuy did a great deal of historical research on attrition in combat. He found several trends that had strong enough empirical backing that he deemed them to be verities. He detailed his conclusions in Understanding War: History and Theory of Combat (1987) and Attrition: Forecasting Battle Casualties and Equipment Losses in Modern War (1995).

Dupuy documented a clear relationship over time between increasing weapon lethality, greater battlefield dispersion, and declining casualty rates in conventional combat. Even as weapons became more lethal, greater dispersal in frontage and depth among ground forces led daily personnel loss rates in battle to decrease.

The average daily battle casualty rate in combat has been declining since 1600 as a consequence. Since battlefield weapons continue to increase in lethality and troops continue to disperse in response, it seems logical to presume the trend in loss rates continues to decline, although this may not necessarily be the case. There were two instances in the 19th century where daily battle casualty rates increased—during the Napoleonic Wars and the American Civil War—before declining again. Dupuy noted that combat casualty rates in the 1973 Arab-Israeli War remained roughly the same as those in World War II (1939-45), almost thirty years earlier. Further research is needed to determine if average daily personnel loss rates have indeed continued to decrease into the 21st century.

Dupuy also discovered that, as with battle outcomes, casualty rates are influenced by the circumstantial variables of combat. Posture, weather, terrain, season, time of day, surprise, fatigue, level of fortification, and “all out” efforts affect loss rates. (The combat loss rates of armored vehicles, artillery, and other other weapons systems are directly related to personnel loss rates, and are affected by many of the same factors.) Consequently, yet counterintuitively, he could find no direct relationship between numerical force ratios and combat casualty rates. Combat power ratios which take into account the circumstances of combat do affect casualty rates; forces with greater combat power inflict higher rates of casualties than less powerful forces do.

Winning forces suffer lower rates of combat losses than losing forces do, whether attacking or defending. (It should be noted that there is a difference between combat loss rates and numbers of losses. Depending on the circumstances, Dupuy found that the numerical losses of the winning and losing forces may often be similar, even if the winner’s casualty rate is lower.)

Dupuy’s research confirmed the fact that the combat loss rates of smaller forces is higher than that of larger forces. This is in part due to the fact that smaller forces have a larger proportion of their troops exposed to enemy weapons; combat casualties tend to concentrated in the forward-deployed combat and combat support elements. Dupuy also surmised that Prussian military theorist Carl von Clausewitz’s concept of friction plays a role in this. The complexity of interactions between increasing numbers of troops and weapons simply diminishes the lethal effects of weapons systems on real world battlefields.

Somewhat unsurprisingly, higher quality forces (that better manage the ambient effects of friction in combat) inflict casualties at higher rates than those with less effectiveness. This can be seen clearly in the disparities in casualties between German and Soviet forces during World War II, Israeli and Arab combatants in 1973, and U.S. and coalition forces and the Iraqis in 1991 and 2003.

Combat Loss Rates on Future Battlefields

What do Dupuy’s combat attrition verities imply about casualties in future battles? As a baseline, he found that the average daily combat casualty rate in Western Europe during World War II for divisional-level engagements was 1-2% for winning forces and 2-3% for losing ones. For a divisional slice of 15,000 personnel, this meant daily combat losses of 150-450 troops, concentrated in the maneuver battalions (The ratio of wounded to killed in modern combat has been found to be consistently about 4:1. 20% are killed in action; the other 80% include mortally wounded/wounded in action, missing, and captured).

It seems reasonable to conclude that future battlefields will be less densely occupied. Brigades, battalions, and companies will be fighting in spaces formerly filled with armies, corps, and divisions. Fewer troops mean fewer overall casualties, but the daily casualty rates of individual smaller units may well exceed those of WWII divisions. Smaller forces experience significant variation in daily casualties, but Dupuy established average daily rates for them as shown below.

For example, based on Dupuy’s methodology, the average daily loss rate unmodified by combat variables for brigade combat teams would be 1.8% per day, battalions would be 8% per day, and companies 21% per day. For a brigade of 4,500, that would result in 81 battle casualties per day, a battalion of 800 would suffer 64 casualties, and a company of 120 would lose 27 troops. These rates would then be modified by the circumstances of each particular engagement.

Several factors could push daily casualty rates down. Milley envisions that U.S. units engaged in an anti-access/area denial environment will be constantly moving. A low density, highly mobile battlefield with fluid lines would be expected to reduce casualty rates for all sides. High mobility might also limit opportunities for infantry assaults and close quarters combat. The high operational tempo will be exhausting, according to Milley. This could also lower loss rates, as the casualty inflicting capabilities of combat units decline with each successive day in battle.

It is not immediately clear how cyberwarfare and information operations might influence casualty rates. One combat variable they might directly impact would be surprise. Dupuy identified surprise as one of the most potent combat power multipliers. A surprised force suffers a higher casualty rate and surprisers enjoy lower loss rates. Russian combat doctrine emphasizes using cyber and information operations to achieve it and forces with degraded situational awareness are highly susceptible to it. As Zelenopillya demonstrated, surprise attacks with modern weapons can be devastating.

Some factors could push combat loss rates up. Long-range precision weapons could expose greater numbers of troops to enemy fires, which would drive casualties up among combat support and combat service support elements. Casualty rates historically drop during night time hours, although modern night-vision technology and persistent drone reconnaissance might will likely enable continuous night and day battle, which could result in higher losses.

Drawing solid conclusions is difficult but the question of future battlefield attrition is far too important not to be studied with greater urgency. Current policy debates over whether or not the draft should be reinstated and the proper size and distribution of manpower in active and reserve components of the Army hinge on getting this right. The trend away from mass on the battlefield means that there may not be a large margin of error should future combat forces suffer higher combat casualties than expected.

Visualizing The Multidomain Battle Battlespace

In the latest issue of Joint Forces Quarterly, General David G. Perkins and General James M. Holmes, respectively the commanding generals of U.S. Army Training and Doctrine Command (TRADOC) and  U.S. Air Force Air Combat Command (ACC), present the results of the initial effort to fashion a unified, joint understanding of the multidomain battle (MDB) battlespace.

The thinking of the services proceeds from a basic idea:

Victory in future combat will be determined by how successfully commanders can understand, visualize, and describe the battlefield to their subordinate commands, thus allowing for more rapid decisionmaking to exploit the initiative and create positions of relative advantage.

In order to create this common understanding, TRADOC and ACC are seeking to blend the conceptualization of their respective operating concepts.

The Army’s…operational framework is a cognitive tool used to assist commanders and staffs in clearly visualizing and describing the application of combat power in time, space, and purpose… The Army’s operational and battlefield framework is, by the reality and physics of the land domain, generally geographically focused and employed in multiple echelons.

The mission of the Air Force is to fly, fight, and win—in air, space, and cyberspace. With this in mind, and with the inherent flexibility provided by the range and speed of air, space, and cyber power, the ACC construct for visualizing and describing operations in time and space has developed differently from the Army’s… One key difference between the two constructs is that while the Army’s is based on physical location of friendly and enemy assets and systems, ACC’s is typically focused more on the functions conducted by friendly and enemy assets and systems. Focusing on the functions conducted by friendly and enemy forces allows coordinated employment and integration of air, space, and cyber effects in the battlespace to protect or exploit friendly functions while degrading or defeating enemy functions across geographic boundaries to create and exploit enemy vulnerabilities and achieve a continuing advantage.

Despite having “somewhat differing perspectives on mission command versus C2 and on a battlefield framework that is oriented on forces and geography versus one that is oriented on function and time,” it turns out that the services’ respective conceptualizations of their operating concepts are not incompatible. The first cut on an integrated concept yielded the diagram above. As Perkins and Holmes point out,

The only noncommon area between these two frameworks is the Air Force’s Adversary Strategic area. This area could easily be accommodated into the Army’s existing framework with the addition of Strategic Deep Fires—an area over the horizon beyond the range of land-based systems, thus requiring cross-domain fires from the sea, air, and space.

Perkins and Holmes go on to map out the next steps.

In the coming year, the Army and Air Force will be conducting a series of experiments and initiatives to help determine the essential components of MDB C2. Between the Services there is a common understanding of the future operational environment, the macro-level problems that must be addressed, and the capability gaps that currently exist. Potential solutions require us to ask questions differently, to ask different questions, and in many cases to change our definitions.

Their expectation is that “Frameworks will tend to merge—not as an either/or binary choice—but as a realization that effective cross-domain operations on the land and sea, in the air, as well as cyber and electromagnetic domains will require a merged framework and a common operating picture.”

So far, so good. Stay tuned.

Robert Work On Recent Chinese Advances In A2/AD Technology

An image of a hypersonic glider-like object broadcast by Chinese state media in October 2017. No known images of the DF-17’s hypersonic glide vehicle exist in the public domain. [CCTV screen capture via East Pendulum/The Diplomat]

Robert Work, former Deputy Secretary of Defense and one of the architects of the Third Offset Strategy, has a very interesting article up over at Task & Purpose detailing the origins of the People’s Republic of China’s (PRC) anti-access/area denial (A2/AD) strategy and the development of military technology to enable it.

According to Work, the PRC government was humiliated by the impunity with which the U.S. was able to sail its aircraft carrier task forces unimpeded through the waters between China and Taiwan during the Third Taiwan Straits crisis in 1995-1996. Soon after, the PRC began a process of military modernization that remains in progress. Part of the modernization included technical development along three main “complementary lines of effort.”

  • The objective of the first line of effort was to obtain rough parity with the U.S. in “battle network-guided munitions warfare in the Western Pacific.” This included detailed study of U.S. performance in the 1990-1991 Gulf War and development of a Chinese version of a battle network that features ballistic and guided missiles.
  • The second line of effort resulted in a sophisticated capability to attack U.S. networked military capabilities through “a blend of cyber, electronic warfare, and deception operations.”
  • The third line of effort produced specialized “assassin’s mace” capabilities for attacking specific weapons systems used for projecting U.S. military power overseas, such as aircraft carriers.

Work asserts that “These three lines of effort now enable contemporary Chinese battle networks to contest the U.S. military in every operating domain: sea, air, land, space, and cyberspace.”

He goes on to describe a fourth technological development line of effort, the fielding of hypersonic glide vehicles (HGV). HGV’s are winged re-entry vehicles boosted aloft by ballistic missiles. Moving at hypersonic speeds at near space altitudes (below 100 kilometers) yet maneuverable, HGVs carrying warheads would be exceptionally difficult to intercept even if the U.S. fielded ballistic missile defense systems capable of engaging such targets (which it currently does not). The Chinese have already deployed HGVs on Dong Feng (DF) 17 intermediate-range ballistic missiles, and late last year began operational testing of the DF-21 possessing intercontinental range.

Work concludes with a stark admonition: “An energetic and robust U.S. response to HGVs is required, including the development of new defenses and offensive hypersonic weapons of our own.”

South Korea Considering Development Of Artillery Defense System

[Mauldin Economics]

In an article I missed on the first go-round from last October, Ankit Panda, senior editor at The Diplomat, detailed a request by the South Korean Joint Chiefs of Staff to the National Assembly Defense Committee to study the feasibility of a missile defense system to counter North Korean long-range artillery and rocket artillery capabilities.

North Korea has invested heavily in its arsenal of conventional artillery. Other than nuclear weapons, this capability likely poses the greatest threat to South Korean security, particularly given the vulnerability of the capital Seoul, a city of nearly 10 million that lies just 35 miles south of the demilitarized zone.

The artillery defense system the South Korean Joint Chiefs seek to develop is not intended to protect civilian areas, however. It would be designed to shield critical command-and-control and missile defense sites. They already considered and rejected buying Israel’s existing Iron Dome missile defense system as inadequate to the magnitude of the threat.

As Panda pointed out, the challenges are formidable for development an artillery defense system capable of effectively countering North Korean capabilities.

South Korea would need to be confident that it would be able to maintain an acceptable intercept rate against the incoming projectiles—a task that may require a prohibitively large investment in launchers and interceptors. Moreover, the battle management software required for a system like this may prove to be exceptionally complex as well. Existing missile defense systems can already have their systems overwhelmed by multiple targets.

It is likely that there will be broader interest in South Korean progress in this area (Iron Dome is a joint effort by the Israelis and Raytheon). Chinese and Russian long-range precision fires capabilities are bulwarks of the anti-access/area denial strategies the U.S. military is currently attempting to overcome via the Third Offset Strategy and multi-domain battle initiatives.

The Principle Of Mass On The Future Battlefield

Men of the U.S. Army 369th Infantry Regiment “Harlem’s Hellfighters,”in action at Séchault on September 29, 1918 during the Meuse-Argonne Offensive. [Wikimedia]

Given the historical trend toward battlefield dispersion as a result of the increasing lethality of weapons, how will the principle of mass apply in future warfare? I have been wondering about this for a while in the context of the two principle missions the U.S. Army must plan and prepare for, combined arms maneuver and wide area security. As multi-domain battle advocates contend, future combat will place a premium on smaller, faster, combat formations capable of massing large amounts of firepower. However, wide area security missions, such as stabilization and counterinsurgency, will continue to demand significant numbers of “boots on the ground,” the traditional definition of mass on the battlefield. These seemingly contradictory requirements are contributing to the Army’s ongoing “identity crisis” over future doctrine, training, and force structure in an era of budget austerity and unchanging global security responsibilities.

Over at the Australian Army Land Power Forum, Lieutenant Colonel James Davis addresses the question generating mass in combat in the context of the strategic challenges that army faces. He cites traditional responses by Western armies to this problem, “Regular and Reserve Force partnering through a standing force generation cycle, indigenous force partnering through deployed training teams and Reserve mobilisation to reconstitute and regenerate deployed units.”

Davis also mentions AirLand Battle and “blitzkrieg” as examples of tactical and operational approaches to limiting the ability of enemy forces to mass on the battlefield. To this he adds “more recent operational concepts, New Generation Warfare and Multi Domain Battle, [that] operate in the air, electromagnetic spectrum and cyber domain and to deny adversary close combat forces access to the battle zone.” These newer concepts use Cyber Electromagnetic Activities (CEMA), Information Operations, long range Joint Fires, and Robotic and Autonomous systems (RAS) to attack enemy efforts to mass.

The U.S. Army is moving rapidly to develop, integrate and deploy these capabilities. Yet, however effectively new doctrine and technology may influence mass in combined arms maneuver combat, it is harder to see how they can mitigate the need for manpower in wide area security missions. Some countries may have the strategic latitude to emphasize combined arms maneuver over wide area security, but the U.S. Army cannot afford to do so in the current security environment. Although conflicts emphasizing combined arms maneuver may present the most dangerous security challenge to the U.S., contingencies involving wide area security are far more likely.

How this may be resolved is an open question at this point in time. It is also a demonstration as to how tactical and operational considerations influence strategic options.

U.S. Army Swarm Offensives In Future Combat

For a while now, military pundits have speculated about the role robotic drones and swarm tactics will play in future warfare. U.S. Army Captain Jules Hurst recently took a first crack at adapting drones and swarms into existing doctrine in an article in Joint Forces Quarterly. In order to move beyond the abstract, Hurst looked at how drone swarms “should be inserted into the tactical concepts of today—chiefly, the five forms of offensive maneuver recognized under Army doctrine.”

Hurst pointed out that while drone design currently remains in flux, “for assessment purposes, future swarm combatants will likely be severable into two broad categories: fire support swarms and maneuver swarms.”

In Hurst’s reckoning, the chief advantage of fire support swarms would be their capacity for overwhelming current air defense systems to deliver either human-targeted or semi-autonomous precision fires. Their long-range endurance of airborne drones also confers an ability to take and hold terrain that current manned systems do not possess.

The primary benefits of ground maneuver swarms, according to Hurst, would be their immunity from the human element of fear, giving them a resilient, persistent level of combat effectiveness. Their ability to collect real-time battlefield intelligence makes them ideal for enabling modern maneuver warfare concepts.

Hurst examines how these capabilities could be exploited through each of the Army’s current schemes of maneuver: infiltration, penetration, frontal attack, envelopment, and the turning maneuver. While concluding that “ultimately, the technological limitations and advantages of maneuver swarms and fire support swarms will determine their uses,” Hurst acknowledged the critical role Army institutional leadership must play in order to successfully utilize the new technology on the battlefield.

U.S. officers and noncommissioned officers can accelerate that comfort [with new weapons] by beginning to postulate about the use of swarms well before they hit the battlefield. In the vein of aviation visionaries Billy Mitchell and Giulio Douhet, members of the Department of Defense must look forward 10, 20, or even 30 years to when artificial intelligence allows the deployment of swarm combatants on a regular basis. It will take years of field maneuvers to perfect the employment of swarms in combat, and the concepts formed during these exercises may be shattered during the first few hours of war. Even so, the U.S. warfighting community must adopt a venture capital mindset and accept many failures for the few novel ideas that may produce game-changing results.

Trevor Dupuy would have agreed. He argued that the crucial factor in military innovation was not technology, but the organization approach to using it. Based on his assessment of historical patterns, Dupuy derived a set of preconditions necessary for the successful assimilation of new technology into warfare.

  1. An imaginative, knowledgeable leadership focused on military affairs, supported by extensive knowledge of, and competence in, the nature and background of the existing military system.
  2. Effective coordination of the nation’s economic, technological-scientific, and military resources.
    1. There must exist industrial or developmental research institutions, basic research institutions, military staffs and their supporting institutions, together with administrative arrangements for linking these with one another and with top decision-making echelons of government.
    2. These bodies must conduct their research, developmental, and testing activities according to mutually familiar methods so that their personnel can communicate, can be mutually supporting, and can evaluate each other’s results.
    3. The efforts of these institutions—in related matters—must be directed toward a common goal.
  3. Opportunity for battlefield experimentation as a basis for evaluation and analysis.

Is the U.S. Army up to the task?

The Historical Combat Effectiveness of Lighter-Weight Armored Forces

A Stryker Infantry Carrier Vehicle-Dragoon fires 30 mm rounds during a live-fire demonstration at Aberdeen Proving Ground, Md., Aug. 16, 2017. Soldiers with 2nd Cavalry Regiment spent six weeks at Aberdeen testing and training on the new Stryker vehicle and a remote Javelin system, which are expected to head to Germany early next year for additional user testing. (Photo Credit: Sean Kimmons)

In 2001, The Dupuy Institute conducted a study for the U.S. Army Center for Army Analysis (CAA) on the historical effectiveness of lighter-weight armored forces. At the time, the Army had developed a requirement for an Interim Armored Vehicle (IAV), lighter and more deployable than existing M1 Abrams Main Battle Tank and the M2 Bradley Infantry Fighting Vehicle, to form the backbone of the future “Objective Force.” This program would result in development of the Stryker Infantry Fighting Vehicle.

CAA initiated the TDI study at the request of Walter W. “Don” Hollis, then the Deputy Undersecretary of the Army for Operations Research (a position that was eliminated in 2006.) TDI completed and submitted “The Historical Combat Effectiveness of Lighter-Weight Armored Forces” to CAA in August 2001. It examined the effectiveness of light and medium-weight armored forces in six scenarios:

  • Conventional conflicts against an armor supported or armor heavy force.
  • Emergency insertions against an armor supported or armor heavy force.
  • Conventional conflict against a primarily infantry force (as one might encounter in sub-Saharan Africa).
  • Emergency insertion against a primarily infantry force.
  • A small to medium insurgency (includes an insurgency that develops during a peacekeeping operation).
  • A peacekeeping operation or similar Operation Other Than War (OOTW) that has some potential for violence.

The historical data the study drew upon came from 146 cases of small-scale contingency operations; U.S. involvement in Vietnam; German counterinsurgency operations in the Balkans, 1941-1945; the Philippines Campaign, 1941-42; the Normandy Campaign, 1944; the Korean War 1950-51; the Persian Gulf War, 1990-91; and U.S. and European experiences with light and medium-weight armor in World War II.

The major conclusions of the study were:

Small Scale Contingency Operations (SSCOs)

  1. Implications for the Interim Armored Vehicle (IAV) Family of Vehicles. It would appear that existing systems (M-2 and M-3 Bradley and M-113) can fulfill most requirements. Current plans to develop an advanced LAV-type vehicle may cover almost all other shortfalls. Mine protection is a design feature that should be emphasized.
  2. Implications for the Interim Brigade Combat Team (IBCT). The need for armor in SSCOs that are not conventional or closely conventional in nature is limited and rarely approaches the requirements of a brigade-size armored force.

Insurgencies

  1. Implications for the Interim Armored Vehicle (IAV) Family of Vehicles. It would appear that existing systems (M-2 and M-3 Bradley and M-113) can fulfill most requirements. The armor threat in insurgencies is very limited until the later stages if the conflict transitions to conventional war. In either case, mine protection is a design feature that may be critical.
  2. Implications for the Interim Brigade Combat Team (IBCT). It is the nature of insurgencies that rapid deployment of armor is not essential. The armor threat in insurgencies is very limited until the later stages if the conflict transitions to a conventional war and rarely approaches the requirements of a brigade-size armored force.

Conventional Warfare

Conventional Conflict Against An Armor Supported Or Armor Heavy Force

  1. Implications for the Interim Armored Vehicle (IAV) Family of Vehicles. It may be expected that opposing heavy armor in a conventional armor versus armor engagement could significantly overmatch the IAV. In this case the primary requirement would be for a weapon system that would allow the IAV to defeat the enemy armor before it could engage the IAV.
  2. Implications for the Interim Brigade Combat Team (IBCT). The IBCT could substitute as an armored cavalry force in such a scenario.

Conventional Conflict Against A Primarily Infantry Force

  1. Implications for the Interim Armored Vehicle (IAV) Family of Vehicles. This appears to be little different from those conclusions found for the use of armor in SSCOs and Insurgencies.
  2. Implications for the Interim Brigade Combat Team (IBCT). The lack of a major armor threat will make the presence of armor useful.

Emergency Insertion Against An Armor Supported Or Armor Heavy Force

  1. Implications for the Interim Armored Vehicle (IAV) Family of Vehicles. It appears that the IAV may be of great use in an emergency insertion. However, the caveat regarding the threat of being overmatched by conventional heavy armor mentioned above should not be ignored. In this case the primary requirement would be for a weapon system that would allow the IAV to defeat the enemy armor before it could engage the IAV.
  2. Implications for the Interim Brigade Combat Team (IBCT). Although the theoretical utility of the IBCT in this scenario may be great it should be noted that The Dupuy Institute was only able to find one comparable case of such a deployment which resulted in actual conflict in US military history in the last 60 years (Korea, 1950). In this case the effect of pushing forward light tanks into the face of heavier enemy tanks was marginal.

Emergency Insertion Against A Primarily Infantry Force

  1. Implications for the Interim Armored Vehicle (IAV) Family of Vehicles. The lack of a major armor threat in this scenario will make the presence of any armor useful. However, The Dupuy Institute was unable to identify the existence of any such cases in the historical record.
  2. Implications for the Interim Brigade Combat Team (IBCT). The lack of a major armor threat will make the presence of any armor useful. However, The Dupuy Institute was unable to identify the existence of any such cases in the historical record.

Other Conclusions

Wheeled Vehicles

  1. There is little historical evidence one way or the other establishing whether wheels or tracks are the preferable feature of AFVs.

Vehicle Design

  1. In SSCOs access to a large-caliber main gun was useful for demolishing obstacles and buildings. This capability is not unique and could be replaced by AT missiles armed CFVs, IFVs and APCs.
  2. Any new lighter tank-like vehicle should make its gun system the highest priority, armor secondary and mobility and maneuverability tertiary.
  3. Mine protection should be emphasized. Mines were a major threat to all types of armor in many scenarios. In many SSCOs it was the major cause of armored vehicle losses.
  4. The robust carrying capacity offered by an APC over a tank is an advantage during many SSCOs.

Terrain Issues

  1. The use of armor in urban fighting, even in SSCOs, is still limited. The threat to armor from other armor in urban terrain during SSCOs is almost nonexistent. Most urban warfare armor needs, where armor basically serves as a support weapon, can be met with light armor (CFVs, IFVs, and APCs).
  2. Vehicle weight is sometimes a limiting factor in less developed areas. In all cases where this was a problem, there was not a corresponding armor threat. As such, in almost all cases, the missions and tasks of a tank can be fulfilled with other light armor (CFVs, IFVs, or APCs).
  3. The primary terrain problem is rivers and flooded areas. It would appear that in difficult terrain, especially heavily forested terrain (areas with lots of rainfall, like jungles), a robust river crossing capability is required.

Operational Factors

  1. Emergency insertions and delaying actions sometimes appear to be a good way to lose lots of armor for limited gain. This tends to come about due to terrain problems, enemy infiltration and bypassing, and the general confusion prevalent in such operations. The Army should be careful not to piecemeal assets when inserting valuable armor resources into a ‘hot’ situation. In many cases holding back and massing the armor for defense or counter-attack may be the better option.
  2. Transportability limitations have not been a major factor in the past for determining whether lighter or heavier armor were sent into a SSCO or a combat environment.

Casualty Sensitivity

  1. In a SSCO or insurgency, in most cases the weight and armor of the AFVs is not critical. As such, one would not expect any significant changes in losses regardless of the type of AFV used (MBT, medium-weight armor, or light armor). However, the perception that US forces are not equipped with the best-protected vehicle may cause some domestic political problems. The US government is very casualty sensitive during SSCOs. Furthermore, the current US main battle tank particularly impressive, and may help provide some additional intimidation in SSCOs.
  2. In any emergency insertion scenario or conventional war scenario, the use of lighter armor could result in higher US casualties and lesser combat effectiveness. This will certainly cause some domestic political problems and may impact army morale. However by the same token, light infantry forces, unsupported by easily deployable armor could present a worse situation.

U.S. Army Solicits Proposals For Mobile Protected Firepower (MPF) Light Tank

The U.S. Army’s late and apparently lamented M551 Sheridan light tank. [U.S. Department of the Army/Wikipedia]

The U.S. Army recently announced that it will begin soliciting Requests for Proposal (RFP) in November to produce a new lightweight armored vehicle for its Mobile Protected Firepower (MPF) program. MPF is intended to field a company of vehicles for each Army Infantry Brigade Combat Team to provide them with “a long-range direct-fire capability for forcible entry and breaching operations.”

The Army also plans to field the new vehicle quickly. It is dispensing with the usual two-to-three year technology development phase, and will ask for delivery of the first sample vehicles by April 2018, one month after the RFP phase is scheduled to end. This will invariably favor proposals using existing off-the-shelf vehicle designs and “mature technology.”

The Army apparently will also accept RFPs with turret-mounted 105mm main guns, at least initially. According to previous MFP parameters, acceptable designs will eventually need to be able to accommodate 120mm guns.

I have observed in the past that the MPF is the result of the Army’s concerns that its light infantry may be deprived of direct fire support on anti-access/area denial (A2/AD) battlefields. Track-mounted, large caliber direct fire guns dedicated to infantry support are something of a doctrinal throwback to the assault guns of World War II, however.

There was a noted tendency during World War II to use anything on the battlefield that resembled a tank as a main battle tank, with unhappy results for the not-main battle tanks. As a consequence, assault guns, tank destroyers, and light tanks became evolutionary dead-ends in the development of post-World War II armored doctrine (the late M551 Sheridan, retired without replacement in 1996, notwithstanding). [For more on the historical background, see The Dupuy Institute, “The Historical Effectiveness of Lighter-Weight Armored Forces,” August 2001.]

The Army has been reluctant to refer to MPF as a light tank, but as David Dopp, the MPF Program Manager admitted, “I don’t want to say it’s a light tank, but it’s kind of like a light tank.” He went on to say that “It’s not going toe to toe with a tank…It’s for the infantry. It goes where the infantry goes — it breaks through bunkers, it works through targets that the infantry can’t get through.”

Major General David Bassett, program executive officer for the Army’s Ground Combat Systems concurred. It will be a tracked vehicle with substantial armor protection, Bassett said, “but certainly not what you’d see on a main battle tank.”

It will be interesting to see what the RFPs have to offer.

Previous TDI commentaries on the MPF Program:

https://dupuyinstitute.org/2016/10/19/back-to-the-future-the-mobile-protected-firepower-mpf-program/

https://dupuyinstitute.org/2017/03/21/u-s-army-moving-forward-with-mobile-protected-firepower-mpf-program/