Tag North Korea

The Cold War Roots of the Integrated U.S./Japan/NATO Air Defense Network

Continental U.S. Air Defense Identifications Zones [MIT Lincoln Laboratory]

My last post detailed how the outbreak of the Korean War in 1950 prompted the U.S. to undertake emergency efforts to bolster its continental air defenses, including the concept of the Air Defense Identification Zone (ADIZ). This post will trace the development of this network and its gradual integration with those of Japan and NATO.

In the early 1950s, U.S. continental air defense, designated the Semi-Automatic Ground Environment air defense system or SAGE, resembled a scaled-up version of the Dowding System, pioneered by Great Britain as it faced air attack by the Luftwaffe in 1940. SAGE was initially a rudimentary and analog affair:

The permanent network depended on each radar site to perform GCI [Ground Control & Intercept] functions or pass information to a nearby GCI center. For example, information gathered by North Truro Air Force Station on Cape Cod was transmitted via three dedicated land lines to the GCI center at Otis AFB, Massachusetts, and then on to the ADC Headquarters at Ent AFB, Colorado. The facility at Otis AFB was a regional information clearinghouse that integrated the data from North Truro and other regional radar stations, Navy picket ships, and the all-volunteer GOC [Ground Observer Corps]. The clearinghouse operation was labor intensive. The data had to be manually copied onto Plexiglas plotting boards. The ground controllers used this data to direct defensive fighters to their targets. It was a slow and cumbersome process, fraught with difficulties. Engagement information was passed on to command headquarters by telephone and teletype. At Ent AFB, the information received from the regional clearinghouses was then passed on to enlisted airmen standing on scaffolds behind the world’s largest Plexiglas board. Using grease pencils, these airmen etched the progress of enemy bombers onto the back of the Plexiglas board so that air defense commanders could evaluate and respond. This arrangement impeded rapid response to the air battle.

It is hard to imagine an air defense challenge of the magnitude that potentially faced the U.S. and USSR by 1955. The Strategic Air Command (SAC) bomber fleet peaked at over 2,500 in 1955-1965, with 2,000 B-47s (range of 2,013 statute miles) and 750 B-52s (range of 4,480 statute miles). The range of U.S. bombers was extended considerably by the ~800 KC-135 aerial re-fueling tanker aircraft fleet as well.

In spite of the much publicized “bomber gap,” taking Soviet production numbers (and liberally adding aircraft of shorter range or unavailable until 1962…) produces an approximate estimate for a Soviet bombing fleet:

  • M-4 “Bison” (range of 3480 statute miles) = 93
  • Tu-16 “Badger” (range of 3888 statute miles) = 1507
  • Tu-22 “Blinder” (range of 3000 statute miles) = 250-300
  • Tu-95 “Bear” (range of 9400 statute miles) = 300+

That gave the U.S. an advantage in bombers of 2,750 to ~2,200 over the Soviets. Now, imagine this air battle being conducted with manual tracking on plexiglass with grease pencils…untenable!

Air Defense and Modern Computing

However, the problem proved amenable to solutions provided by the pending computer revolution.

At the Lincoln Laboratory development continued on an automated command and control system centered around the 250-ton Whirlwind II (AN/FSQ-7) computer. Containing some 49,000 vacuum tubes, the Whirlwind II became a central component of the SAGE system. SAGE, a system of analog computer-equipped direction centers, processed information from ground radars, picket ships, early-warning aircraft, and ground observers onto a generated radarscope to create a composite picture of the emerging air battle. Gone were the Plexiglas TM boards and teletype reports. Having an instantaneous view of the air picture over North America, defense commanders would be able to quickly evaluate the threats and effectively deploy interceptors and missiles to meet the threat.

The SAGE system was continually upgraded through the mid-to-late 1950s.

By 1954, with several more radars in the northeast providing data, the Cambridge control center (a prototype SAGE center) gained experience in directing F-86D interceptors against B-47 bombers performing mock raids. Still much development, research, and testing lay ahead. Bringing together long-range radar, communications, microwave electronics, and digital computer technologies required the largest research and development effort since the Manhattan Project. During its first ten years, the government spent $8 billion to develop and deploy SAGE. By 1958, Lincoln Laboratory had a professional staff of 720 with an annual budget of $22.5 million, to conduct SAGE-related work. The contract with IBM to build sixty production models of the Whirlwind II at $30 million each provided about half of the corporation’s revenues for the 1950s and exposed the corporation to technologies that it would use in the 1960s to dominate the computer industry. In the meantime, scientists and electronic engineers in the defense industry strove to install better radars and make these radars invulnerable to electronic countermeasures (ECM), commonly called jamming.

The SAGE development effort became one of the foundations of modern computing, giving IBM the technological capability to dominate for several decades, until it outsourced two key components: hardware to Intel and software to a young Microsoft, both of which became behemoths of the internet age. It is also estimated that this effort brought a price tag which exceeded that of the Manhattan Project. SAGE also transformed the attitude of the USAF towards technology and computerization.

Current Air Defense Networks

In the 1950s and 60s, the U.S. continental air defense network gradually began to expand geographically and integrate with NADGE and JADGE air defense networks of its NATO allies and Japan.

NATO Air Defense Ground Environment (NADGE): This was approved by NATO in December 1955, and became operational in 1962 with 18 radar stations. This eventually grew to 84 stations and provided an inter-connected network from Norway to Turkey before being superseded by the NATO Integrated Air Defense System (NATINADS) in 1972. NATINADS was further upgraded in the 1980s to include data from the E-3 Sentry AWACS aircraft (AEGIS (Airborne Early-warning/Ground Environment Integrated Segment); not to be confused with the USN system with the same acronym.)

Base Air Defense Ground Environment (BADGE): This was the automated system, in the same fashion as SAGE, which replaced the manual system in place with the JASDF since 1960. The requirement was stated in July 1961, and was actually modeled on the Naval Tactical Information System (NTDS), developed by Hughes for the US Navy. This was ordered in December 1964, and operational in March 1969. This was superseded by Japan Aerospace Defense Ground Environment (JADGE) in July 2009.

Japanese Air Defense and the Cold War Origins of Air Defense Identification Zones

Air Defense Identification Zones (ADIZ) in the South China Sea [Maximilian Dörrbecker (Chumwa)/Creative Commons/Wikipedia]

My previous posts have discussed the Japanese Air Self Defense Force (JASDF) and the aircraft used to perform the Defensive Counter Air (DCA) mission. To accomplish this, the JASDF is supported by an extensive air defense system which closely mirrors U.S. Air Force (USAF) and U.S. Navy (USN) systems and has co-evolved as technology and threats have changed over time.

Japan’s integrated air defense network and the current challenges it faces are both rooted in the Cold War origins of the modern U.S. air defense network.

On June 25, 1950, North Korea launched an invasion of South Korea, drawing the United States into a war that would last for three years. Believing that the North Korean attack could represent the first phase of a Soviet-inspired general war, the Joint Chiefs of Staff ordered Air Force air defense forces to a special alert status. In the process of placing forces on heightened alert, the Air Force uncovered major weaknesses in the coordination of defensive units to defend the nation’s airspace. As a result, an air defense command and control structure began to develop and Air Defense Identification Zones (ADIZ) were staked out along the nation’s frontiers. With the establishment of ADIZ, unidentified aircraft approaching North American airspace would be interrogated by radio. If the radio interrogation failed to identify the aircraft, the Air Force launched interceptor aircraft to identify the intruder visually. In addition, the Air Force received Army cooperation. The commander of the Army’s Antiaircraft Artillery Command allowed the Air Force to take operational control of the gun batteries as part of a coordinated defense in the event of attack.

In addition to North America, the U.S. unilaterally declared ADIZs to protect Japan, South Korea, the Philippines, and Taiwan in 1950. This action had no explicit foundation in international law.

Under the Convention on International Civil Aviation (the Chicago Convention), each State has complete and exclusive sovereignty over the airspace above its territory. While national sovereignty cannot be delegated, the responsibility for the provision of air traffic services can be delegated.… [A] State which delegates to another State the responsibility for providing air traffic services within airspace over its territory does so without derogation of its sovereignty.

This precedent set the stage for China to unilaterally declare ADIZs its own in 2013 that overlap those of Japan in the East China Sea. China’s ADIZs have the same international legal validity as those of the U.S. and Japan, which has muted criticism of China’s actions by those countries.

Recent activity by the Chinese People’s Liberation Army Air Force (PLAAF) and nuclear and missile testing by the Democratic People’s Republic of Korea (DPRK, or North Korea) is prompting incremental upgrades and improvements to the Japanese air defense radar network.

In August 2018, six Chinese H-6 bombers passed between Okinawa’s main island and Miyako Island heading north to Kii Peninsula. “The activities by Chinese aircraft in surrounding areas of our country have become more active and expanding its area of operation,” the spokesman [of the Japanese Ministry of Defense] said.… “There were no units placed on the islands on the Pacific Ocean side, such as Ogasawara islands, which conducted monitoring of the area…and the area was without an air defense capability.”

Such actions by the PLAAF and People’s Liberation Army Navy (PLAN) have provided significant rationale in the Japanese decision to purchase the F-35B and retrofit their Izumo-class helicopter carriers to operate them, as the Pacific Ocean side of Japan is relatively less developed for air defense and airfields for land-based aircraft.

My next post will look at the development of the U.S. air defense network and its eventual integration with those of Japan and NATO

Of Nuclear Buttons: Presidential Authority To Use Nuclear Weapons

[The Adventures of Buckaroo Banzai Across The 8th Dimension (1984)]

While the need for the president of the United States to respond swiftly to a nuclear emergency is clear, should there be limits on the commander in chief’s authority to order use of nuclear weapons in situations that fall below the threshold of existential threat? The question has arisen because the administration of President Donald Trump has challenged the existing taboos against nuclear use.

Last November, the U.S. Senate Foreign Relations Committee held a hearing to investigate the topic, which congress had not considered since the height of the Cold War in the mid-1970s. Called at the behest of Senator Bob Corker (R-TN), the committee chairman, the hearing appeared intended to address congressional concerns over rumors of consideration of a preemptive U.S. attack on North Korea that could include nuclear strikes.

The consensus of the witnesses called to testify was that as presently construed, there is little statutory limit on the president’s power to authorize nuclear weapon use. The witnesses also questioned the wisdom of legislating changes to the existing setup.

Professor Peter Fever of Duke University, a noted scholar on nuclear issues and former National Security Council advisor, caveated between presidential authority to respond to a “bolt from the blue” surprise nuclear strike by an adversary, which was unquestioned, and the legitimacy of unilaterally ordering the use of nuclear weapons in a non-emergency scenario, which would be far more dubious. He conceded that there is no formal test for legality; the only real constraint would lie in the judgement of U.S. military personnel whether or not to carry out a presidential order of uncertain lawfulness.

There is no existing statutory framework undergirding the existing arrangement; it is an artifact of the urgency of the Cold War nuclear arms race. Under the Atomic Energy Act, congress gave responsibility for development, production, and custody of nuclear weapons to the executive branch, but has passed no laws defining the circumstances under which they may or may not be used. Harry S. Truman alone decided to use atomic bombs against Japan in 1945. In the late-1950s, Dwight D. Eisenhower secretly pre-delegated authority to use nuclear weapons in certain emergency situations to some U.S. theater commanders; these instructions were also adopted by John F. Kennedy and Lyndon Johnson. Several presidents authorized secret deployment of nuclear weapons to overseas storage locations.

The U.S. constitution offers no clear guidance. War power are divided between congress, which has the sole authority to declare war and to raise and maintain armed forces, and the president, who is commander in chief of the armed forces. Congress attempted to clarify the circumstances when it was permissible for the president to unilaterally authorize the use of military force in the War Powers Resolution of 1973. It stipulates that the president may commit U.S. military forces abroad only following a congressional declaration of war or authorization to use force, or in response to “a national emergency created by attack upon the United States, its territories or possessions, or its armed forces.” Successive presidents have held that the resolution is unconstitutional, however, and have ignored its provisions on several occasions.

Congress has traditionally afforded presidents wide deference in the conduct of foreign affairs and military conflicts, albeit under its existing mechanisms of oversight. In waging wars, presidents are subject to U.S. law, including obligations to follow congressionally-approved international conventions defining the laws of war. While the president and congress have disagreed over whether or not to begin or end foreign conflicts, the legislative branch has rarely elected to impose limits on a president’s prerogatives on how to wage such conflicts, to include the choice of weapons to be employed.

The situation in Korea is an interesting case in itself. It was the first post-World War II case where a president committed U.S. military forces to an overseas conflict without seeking a congressional declaration of war. Congress neither authorized U.S. intervention in 1950 nor sanctioned the 1953 armistice that led to a cessation of combat. Truman instead invoked United Nations Security Council resolutions as justification for intervening in what he termed a “police action.”

Legally, the U.S. remains in a state of hostilities with North Korea. The 1953 armistice that halted the fighting was supposed to lead to a formal peace treaty, but an agreement was never consummated. Under such precedents, the Trump administration could well claim that that the president is within his constitutional prerogatives in deciding to employ nuclear weapons there in a case of renewed hostilities.

In all reality, defining the limits of presidential authority over nuclear weapons would be a political matter. While congress possesses the constitutional right to legislate U.S. laws on the subject, actually doing so would likely require a rare bipartisan sense of purpose strong enough to overcome what would undoubtedly be resolute political and institutional opposition. Even if such a law was passed, it is likely every president would view it is an unconstitutional infringement on executive power. Resolving an impasse could provoke a constitutional crisis. Leaving it unresolved could also easily result in catastrophic confusion in the military chain of command in an emergency. Redefining presidential nuclear authority would also probably require an expensive retooling of the nuclear command and control system. It would also introduce unforeseen second and third order effects into American foreign policy and military strategy.

In the end, a better solution to the problem might simply be for the American people to exercise due care in electing presidents to trust with decisions of existential consequence. Or they could decide to mitigate the risk by drastically reducing or abolishing the nuclear stockpile.

 

South Korea Considering Development Of Artillery Defense System

[Mauldin Economics]

In an article I missed on the first go-round from last October, Ankit Panda, senior editor at The Diplomat, detailed a request by the South Korean Joint Chiefs of Staff to the National Assembly Defense Committee to study the feasibility of a missile defense system to counter North Korean long-range artillery and rocket artillery capabilities.

North Korea has invested heavily in its arsenal of conventional artillery. Other than nuclear weapons, this capability likely poses the greatest threat to South Korean security, particularly given the vulnerability of the capital Seoul, a city of nearly 10 million that lies just 35 miles south of the demilitarized zone.

The artillery defense system the South Korean Joint Chiefs seek to develop is not intended to protect civilian areas, however. It would be designed to shield critical command-and-control and missile defense sites. They already considered and rejected buying Israel’s existing Iron Dome missile defense system as inadequate to the magnitude of the threat.

As Panda pointed out, the challenges are formidable for development an artillery defense system capable of effectively countering North Korean capabilities.

South Korea would need to be confident that it would be able to maintain an acceptable intercept rate against the incoming projectiles—a task that may require a prohibitively large investment in launchers and interceptors. Moreover, the battle management software required for a system like this may prove to be exceptionally complex as well. Existing missile defense systems can already have their systems overwhelmed by multiple targets.

It is likely that there will be broader interest in South Korean progress in this area (Iron Dome is a joint effort by the Israelis and Raytheon). Chinese and Russian long-range precision fires capabilities are bulwarks of the anti-access/area denial strategies the U.S. military is currently attempting to overcome via the Third Offset Strategy and multi-domain battle initiatives.

Did The Patriot BMD Miss Again In Saudi Arabia?

Apparent trajectory of Houthi Burqan ballistic missile fired at Saudi Arabia on 4 November 2017 [New York Times]

On 4 November 2017, Houthi rebels fired a Burqan 2H (a variant of the SCUD) ballistic missile from Yemeni territory aimed at Riyadh International Airport in Saudi Arabia. The Saudis claimed to have intercepted the missile before it hit using a U.S.-made Patriot PAC-2 ballistic missile defense (BMD) system.

A team of independent analysts have challenged that claim, however. Led by Jeffery Lewis, Director of the East Asia Nonproliferation Program at the Middleberry Institute of International Studies at Monterey, the team analyzed video of an impact near the Riyadh Airport and scattered missile debris. Based on this evidence, they concluded that five Saudi Patriot BMD missiles failed to intercept the incoming missile and that its warhead detonated on the ground just a kilometer away from a busy airport terminal.

The apparent failure of the Patriot BMD continues a string of operational disappointments that extends back to the 1991 Gulf War. Intended for terminal BMD against short and medium range ballistic missile threats, the Patriot forms part of the layered U.S. BMD system, and has also been sold to 14 other countries, including South Korea and Japan.

The credibility of U.S. and regional military defenses against North Korea rests significantly on perceptions of the effectiveness of U.S-made BMD. As President Donald Trump boasted the day after the alleged Saudi missile intercept, “Our [Patriot] system knocked the missile out of the air… That’s how good we are. Nobody makes what we make, and now we’re selling it all over the world.”

How Do You Solve A Problem Like North Korea?

Flight trajectories of North Korean missile tests, May-November 2017. [The Washington Post]

The Democratic People’s Republic of Korea (DPRK) conducted another ballistic missile test yesterday. Following a nearly vertical “lofted trajectory,” the test missile reached a height of 2,800 miles and impacted 620 miles downrange in the Sea of Japan. This performance would give the missile, which the North Koreans have designated the Hwasong-15, a strike range of 8,100 miles, which would include all of the United States.

Appended here is a roundup of TDI posts that address the political and military challenges posed by North Korea. It should be noted that the DPRK nuclear program has been underway for decades and has defied easy resolution thus far. There are no clear options at this stage and each potential solution carries a mix of risk and reward. The DPRK is highly militarized and the danger of catastrophic conflict looms large, with the potential to inflict military and civilian casualties running into the hundreds of thousands or more.

The first set of posts address a potential war on the Korean peninsula.

Chronology of North Korean Missile Development

Insurgency In The DPRK?

U.S. And China: Deterrence And Resolve Over North Korea

Casualty Estimates for a War with North Korea

The CRS Casualty Estimates

The second set of posts look at the DPRK ballistic missile threat and possible counters.

So, What Would Happen If The Norks Did Fire An ICBM At The U.S.?

Aegis, THAAD, Patriots and GBI

Defending Guam From North Korean Ballistic Missiles

The Pros And Cons Of Shooting Down North Korean Ballistic Missile Tests

 

 

The Pros And Cons Of Shooting Down North Korean Ballistic Missile Tests

Two THAAD interceptors and a Standard-Missile 3 Block IA missile were launched resulting in the intercept of two near-simultaneous medium-range ballistic missile targets during designated Flight Test Operational-01 (FTO-01) on September 10, 2013 in the vicinity of the U.S. Army Kwajalein Atoll/ Reagan Test Site and surrounding areas in the western Pacific. The test demonstrated the ability of the Aegis BMD and THAAD weapon systems to function in a layered defense architecture. Photos taken by Missile Defense Agency. (Photo Credit: Missile Defense Agency)

On 3 September, North Korea tested what it claimed to be a thermonuclear warhead which can be mounted on a ballistic missile. While analysts debate whether the device detonated actually was a deliverable thermonuclear bomb, it is clear that the regime of Kim Jong Un is making progress in developing the capability to strike the United States and its regional allies with nuclear weapons.

Is there anything that can be done to halt North Korea weapons development and mitigate its threatening behavior? At the moment, there appear to be few policy options, and each of them carries significant risk.

  1. Launch a preemptive military strike.
  2. Enlist or coerce China into reigning in North Korea’s adventurism.
  3. Accept the fact that North Korea is now the ninth nuclear power in the world—with the capability to strike the U.S. and its regional allies with nuclear-armed ballistic missiles—and adopt the Cold War approach of containing it militarily and limiting its nuclear arsenal through negotiation.

Would attempting to shoot down forthcoming North Korean ballistic missile test launches be a viable policy alternative for the U.S. and its allies? Geof Clark proposed this option in a recent post:

I would argue that the U.S. use the United Nations as a forum to define the parameters for any possible North Korean missile launch that should be intercepted with allied BMD [ballistic missile defense] assets If, for example, a North Korean missile looks likely to hit close to Tokyo, based upon the trajectory identified by Aegis ships at sea, then BMD should shoot it down. By making our rules of engagement public, this would provide a clear signal to China and Russia that the U.S. and its allies intend to use their BMD capabilities (and potentially learn from any failures) against live enemy missiles, but also temper the risk of escalation into any further missile volleys between any parties.

A number of commentators questioned why the U.S. or Japan elected not to attempt to intercept North Korea’s 29 August ballistic missile test that flew directly over Japanese territory. A variety of technical and political issues were cited as justification for restraint. The U.S. and Japan resorted to the usual mix of condemnation and calls for further economic sanctions.

What are the arguments for and against a policy of intercepting North Korean missile tests?

Pros:

  1. The main argument in favor of this is that it could change the narrative with North Korea, which goes like this: Kim’s government stages some provocation and the U.S. and its allies respond with outraged rhetoric, diplomatic moves to further isolate Kim’s regime, and the imposition of a new round of economic sanctions  It is hard to see how much more isolated North Korea can be made, however, and  the vast majority of its trade is with a benevolent China across a porous border. This story has played out repeatedly, yet nothing really changes. Shooting down North Korea’s missile tests could change this stale narrative by preventing it from conducting provocations without consequence.
  2. It would send a strong message to North Korea.
  3. It is not out of line with the provocations North Korea has done over the years (for example: sinking a South Korean patrol boat in 2002).
  4. It is a step short of a preemptive strike by the U.S. and its allies.
  5. It could stall North Korean missile development (especially the ballistic cap, which the North Koreans still have not developed).
  6. It could provide the basis for negotiations.
  7. It is a credible threat (unlike threatening trade sanctions against China to coerce it into restraining North Korea).
  8. It would embarrass Kim’s government by demonstrating that its threats are no longer effective.

Cons:

  1. Which missile tests would be shot down? The U.S. has already declared that any North Korean missile that appears to be targeted at the territory of the U.S. or its allies would be engaged by BMDs and considered an act of war. (The determination that the 29 August test was not aimed at friendly territory was a major factor in the decision not to engage it.) The Trump administration has repeatedly warned the North Koreans of a massive military response to any perceived attack.
    1. Intercepting a North Korean test flying over Japan or into international waters would likely be interpreted by Kim’s regime as a deliberate escalation of the conflict. Such an act would probably extinguish what some have seen as signals from North Korea of a willingness to engage in diplomatic talks, and could precipitate counter-provocations in what is already a highly tense stand-off.
    2. Some have speculated that the North Koreans may attempt to launch a ballistic missile carrying what many believe to be a recently-tested thermonuclear warhead. The consequences of an attempt to intercept such a test would inevitably be dire.
    3. What about targeting North Korean short-range ballistic missiles, or long-range missile tested at short ranges? Intercepting these tests would pose formidable technical challenges for U.S. and allied BMD systems. The risk of failed intercepts would increase and the level of provocation to the North Koreans would be very high.
  2. China might interpret an attempted intercept as a violation of North Korean sovereignty. Although the Chinese have expressed frustration with North Korea’s behavior, it remains a Chinese client state. While certainly provocative, North Korea’s missile tests over Japan are not a clear cut violation of international law. China remains committed to defending North Korea against foreign threats. Intercepting an allegedly “peaceful” ballistic missile test could easily bring China to North Korea’s overt assistance. This would run contrary to the Trump administration’s avowed policy of enlisting the Chinese to restrain Kim’s government and raises the potential for a direct U.S/China confrontation.
  3. It is not at all clear that key U.S. allies South Korea and Japan would support a policy of intercepting North Korean missile tests not aimed at their territory. The U.S. needs permission from these countries to deploy its theater BMD systems within range of North Korean missiles. South Korea is already ambivalent about hosting U.S. BMDs and Japan has indicated that it will maintain its own policy regarding intercepting potential threats. An aggressive U.S. policy could risk damaging or splitting the alliance.
  4. A vow to intercept North Korean missile tests would place enormous pressure on U.S. and allied BMDs to perform effectively, a capability that remains highly uncertain. While theater BMDs have performed better in tests than the U.S. intercontinental Ground-Based Midcourse Defense (GMD) system, it is unlikely they can intercept every potential target. Any weaknesses demonstrated by theater BMD increases the political effectiveness of North Korea’s putative ballistic missile capability. The current ambiguity works in the favor of the U.S. and its allies. Dispelling the uncertainty would be a high price to pay in any circumstance but defense of U.S. or allied territory.
  5. It is not evident that suppressing North Korean missile tests at this point would have a significant impact on its capabilities. North Korea has already demonstrated that its ballistic missiles work well enough to pose a clear threat to the U.S. and its allies. Further testing would only refine existing technology to reduce the probability of technical failures.

Like the other available policy options, this one too carries a mix of potential benefits and risky downsides. The consequences of attempting to implement it cannot be completely foreseen. What does seem clear is that the existing approach does not seem to have worked. Successfully resolving a problem like North Korea is likely to take time, patience, and no small amount of imagination.

 

Defending Guam From North Korean Ballistic Missiles

The North Korean ballistic missile threat to Guam [Reuters]

Gerry Doyle has an excellent article in The New York Times exploring the issue of defending the island of Guam from a potential North Korean ballistic missile threat. In response to President Donald Trump’s comments earlier this week, North Korea issued an oddly specific threat to conduct a ballistic missile test targeting the area around Guam.

Key takeaways from the article:

  • The U.S. Terminal High Altitude Area Defense (THAAD) ballistic missile (BMD) system based in South Korea would have no chance of intercepting a Hwasong-12 intermediate-range ballistic missile (IRBM) during its initial ascent (boost-phase). THAAD is not designed for boost-phase intercept.
  • Japan fields a sea-based U.S. Aegis BMD equipped with SM-3 missiles, which is designed to intercept short-, medium-, and intermediate-range ballistic missiles at the middle (mid-course) and final (terminal phase) parts of their flight. It is likely that a Hwasong-12 moving toward Guam would be out of SM-3 range as it passed over Japan, however.
  • Guam itself is defended by a layered BMD system including sea-based U.S. Aegis, THAAD, and Patriot PAC-3 batteries, which are all designed to engage incoming ballistic missiles during mid-course and terminal phase. This is where an intercept would most likely occur.

Despite possessing the technical capability for intercepting a provocative North Korean missile test, Doyle points out a tricky policy problem for the U.S.

If Japan or the United States shoots down the missiles, North Korea could see it as an escalation, prompting a military response. If they do nothing, and allow the North Korean missiles to fly unharmed, it’s unclear how Pyongyang would interpret it.

On the other hand, if they try to intercept the missiles but fail, it could undermine the credibility of both countries’ assurances that their antimissile systems can work.

Stay tuned.

So, What Would Happen If The Norks Did Fire An ICBM At The U.S.?

The intercontinental ballistic missile Hwasong-14 is allegedly seen during its test in this undated photo released by North Korea’s Korean Central News Agency (KCNA) in Pyongyang, July, 4 2017. [KCNA/via REUTERS]

This past July, North Korea conducted a pair of test launches of a new intercontinental ballistic missile (ICBM), which it calls the Hwasong-14 (“Mars”). While North Korean leader Kim Jong-Un claimed the vehicle can strike “any region and place any time,” skeptical Western military analysts concede it likely has the range to reach much of the United States. (There is disagreement as to whether the Hawsong-14 can actually deliver a nuclear warhead to targets in the Eastern U.S., but analysts concur that it can strike Hawaii, Alaska, and the Western U.S.)

According to a recent Defense Intelligence Agency assessment, the North Koreans have developed nuclear warheads small enough to be mounted on its ballistic missiles, including the Hwasong-14. The DIA estimate also credited the North Koreans with a stockpile of up to 60 nuclear weapons, though some outside analysts believe it to be fewer.

Earlier this week, North Korean Foreign Minister Ri Yong Ho vowed that, “Should the U.S. pounce upon the DPRK (Democratic People’s Republic of Korea) with military force at last, the DPRK is ready to teach the U.S. a severe lesson with its strategic nuclear force.”

What real capability does a functional ICBM with nuclear warheads provide the North Koreans? What would happen if they did attempt a nuclear attack on the U.S.? The answer is that no one, including the North Koreans, knows with any certainty.

Hitting A Bullet With A Bullet: Ballistic Missile Defense

Shooting down an incoming ICBM has been likened to “hitting a bullet with a bullet”; however IBCMs travel at speeds eight times faster than a bullet. The only current ballistic missile defense (BMD) system the U.S. possesses capable of intercepting ICBMs is the Ground-Based Midcourse Defense (GMD), a combination of Ground Based Interceptors (GBIs), long-range radars, and a distributed fire control system. There are only two existing GMD emplacements, one at Ft. Greely, Alaska, and the other at Vandenberg Air Force Base in California. The Ft. Greely site houses 30 GBIs, though ten more are scheduled for deployment there, and four are based at Vandenberg, for a total of 44 by the end of 2017.

GMD has demonstrated a mixed track record in tests, achieving 10 intercepts in 18 attempts (55%). U.S. Air Force General Lori Robinson, commander of the U.S. Northern Command, nevertheless told the Senate Armed Services Committee in April that “Today we have exactly what we need to defend the United States of America against North Korea.”

This conclusion has been questioned by the Government Accountability Office, National Academy of Sciences, and the Union of Concerned Scientists, who have all sharply criticized GMD’s technical viability and accuracy. GMD’s advocates claim that using a “shoot-look-shoot” tactic, which would target an incoming ICBM with successive GBIs raises the odds of success. However, the Union of Concerned Scientists have calculated that if the North Koreans were to fire a volley of five ICBMs and each GBI had a 50% chance of a successful interception, there would be a 28% chance that one of the North Korean missiles would get through.

The U.S. fields three regional or theater BMDs, Aegis, Patriot, and Terminal High Altitude Area Defense (THAAD). These were developed to engage short- to intermediate-range ballistic missile threats, however, not ICBMs, which travel much faster and higher. They are, however, a key component in defending South Korea, Japan, and other countries in the region from North Korean ballistic missile attack.

Another potential ICBM defense would be to interdict the missiles before they are launched. Liquid-fueled missiles such as the Hwasong-14 require hours to fuel with highly volatile propellants, rendering them vulnerable to conventional air or missile attack. While the U.S. and the South Koreans are able to detect test preparations ahead of time, they have not been able to pinpoint launch sites in real time before firing. The North Koreans have developed mobile launchers and capabilities for quickly firing missiles from remote areas of the country far from existing infrastructure. (As the U.S. and its Coalition allies discovered in the 1991 Gulf War, interdicting mobile ballistic missile launchers is a difficult task even with complete air superiority.) Successfully interdicting a North Korean ICBM launch would require far better U.S./South Korean intelligence/surveillance/reconnaissance capabilities than those currently available.

“If he says they can’t hit Nevada on a clear day, you better believe it”

Should a North Korean ICBM successfully evade U.S. missile defenses, what would happen next? This is also a very good question with no clear answer. Conducting a successful ICBM attack with a nuclear weapon is an extraordinarily challenging technical task, which requires a lot of sophisticated technology to function flawlessly under rigorous conditions. The U.S. has tested an ICBM/nuclear warhead under operational conditions only once, with Shot FRIGATE BIRD during Operation DOMINIC in 1962. The submarine U.S.S. Ethan Allen fired a Polaris A2 ballistic missile armed with a 600-kiloton W-47 thermonuclear warhead, which detonated successfully in the air 2,000 meters from target over Johnston Island, 120 miles away in the Pacific Ocean.

Some analysts believe that the re-entry vehicle (RV) from the 28 July Hwasong-14 test broke up before landing. It is unlikely a real warhead would have survived such a failure. RV’s house a ballistic missile’s warhead, protecting it from the stresses of flight and atmospheric reentry and provide the terminal guidance onto the target. The U.S. required years of extensive, expensive testing before it perfected an ICBM RV. While North Korea has developed effective RVs for its shorter range ballistic missiles, the lack of a durable one for the Hwasong-14 will degrade its potential effectiveness and accuracy for the time being.

If a Hwasong-14 RV did manage to survive reentry, what then? On target is a relative term, even with nuclear weapons. North Korea is believed to have developed only kiloton-range fission-type nuclear devices, not megaton-range thermonuclear warheads. Size imposes limits on the yield of fission devices. The Hwasong-14 is estimated to be capable of delivering a payload of only 500 kg or less at intercontinental ranges, which would have to include the RV and the warhead. To date, the North Koreans have tested devices yielding  10-15 kilotons. With the addition of fission-boosting using deuterium, lithium-6, or tritium, the total yield might be significantly enhanced. Some analysts credit the North Koreans with the capability for building a boosted, composite pit device yielding somewhere in the 30-kiloton range. For comparison’s sake, the Fat Man fission bomb dropped on Nagasaki in 1945 had a yield of approximately 21 kilotons.

There is no firm estimate of the Hwasong-14’s circular error of probability (CEP) or the radius within which 50% of missile impacts would theoretically be expected to land, a standard measure of ballistic missile accuracy. By scaling up the accuracy of the Hwasong-14’s SCUD missile antecedent to intercontinental range, one analysis estimated a CEP of 30 kilometers. A blunt-body shaped RV and hasty launches from remote sites would hamper accuracy as well. It is also plausibly arguable that North Korea might be capable of matching the 3-5 kilometer CEP of the first Soviet ICBM, the R-7.

With a CEP of 30 kilometers, it would be entirely possible for a Hwasong-14 to fly successfully, evade U.S. BMDs, detonate effectively, and still completely miss a target as large as Los Angeles.

Map of a hypothetical strike on Los Angeles with a 30-kiloton nuclear airburst, delivered by a ballistic missile with a 30 kilometer CEP. The red cross represents the designated ground zero, the blue lines indicate the CEP radius, and the red dot represents the radius of 5-psi overpressure effects from the nuclear explosion. [MISSILEMAP by Alex Wellerstein, RESTRICTED DATA: The Nuclear Secrecy Blog ]

A CEP of 3-5 kilometers would greatly increase the probability of even a near-miss hitting a densely populated section of the city, killing and injuring tens or hundreds of thousands, if not more.

Map of a hypothetical strike on Los Angeles with a 30-kiloton nuclear airburst, delivered by a ballistic missile with a 3-5 kilometer CEP. The red cross represents the designated ground zero, the blue lines indicate the CEP radius, and the red dot represents the radius of 5-psi overpressure effects from the nuclear explosion. [MISSILEMAP by Alex Wellerstein, RESTRICTED DATA: The Nuclear Secrecy Blog ]
A Catastrophe Of Unimaginable Consequences

Close observers of the North Korean nuclear and missile programs understand that the July missile tests represent a nominal, but real, capability for delivering a nuclear ballistic missile strike against the U.S. The challenges in improving this capability are formidable, but they are technical in nature and there is no reason to believe the North Koreans cannot solve them in time. A true game changer would be the ability to deliver a thermonuclear warhead yielding hundreds of kilotons or more. Some analysts see this development as inevitable.

Regardless of the scenario, the launch of any North Korean nuclear-armed ICBMs toward the United States could only be regarded as a catastrophic failure of American foreign and military policy. The consequences of even a limited nuclear strike on U.S. soil would be effectively unimaginable, far beyond the death, destruction, and inevitable reality of retaliation-in-kind against the North Korean regime.

It would also represent a failure of any rational North Korean defense policy as well, since the only value ICBMs have to North Korea is in deterring foreign attack. They are militarily useless to prevent a counterattack that would invariably destroy Kim Jong-Un’s government. Their only value lies in the political threat to use them.

It would seem then that the U.S. and North Korea share a common interest in seeing that North Korea’s ICBMs are never used. The only sensible means to that end lie in deterrence and negotiation.

U.S. And China: Deterrence And Resolve Over North Korea

U.S. B-1 bombers overfly Korean Peninsula after North’s ICBM test, June 20th, 2017. [picture-alliance/AP Photo/Lee Jin-man]

While North Korea tests its inter-continental ballistic missiles (ICBM)s, the U.S. and China demonstrate their capabilities and resolve to use force, both nuclear and conventional. These shows of force seem to be ratcheting up, as the North Korean tests occur more frequently.  Flights of bombers and naval exercises are also complemented by words, sometimes quite strong words, such as those by the U.S. Pacific Fleet Commander, Admiral Scott Smith, who while speaking at the Australian National University’s security conference in late July, said,

Every member of the U.S. military has sworn an oath to defend the constitution of the United States against all enemies foreign and domestic and to obey the officers and the president of the United States as commander and chief appointed over us.

Asked by an academic in the audience whether he would make a nuclear attack on China next week if President Trump ordered it, Swift replied: “The answer would be: yes.”  These words are then reported in the press as “US admiral would ‘nuke China next week’ if Trump ordered it.” (South China Morning Post)  That kind of bombast is sensational, and intended to draw in readers. The reality of nuclear deterrence is that it has to be credible, meaning that the target nation must believe that nuclear weapons would be used if a certain line is crossed. This may make uncomfortable reading today, as Cold War memories are fading, but it has been reality since 1945.

[Photo deleted at the request of AFP]

China, meanwhile, has staged two different naval exercises in the Yellow Sea, likely organized to mark the People’s Liberation Army’s (PLA) 90th Anniversary on August 1st, 2017. It is ironic that naval exercises celebrate the Army’s anniversary, and that concurrently the PLA is shrinking relative to the Chinese Navy and Air Force. The PLA Army will likely take the brunt of the reduction, and the PLA Navy and Air Force are expected to increase in size,” according to Dr. David Finkelstein of the Center for Naval Analysis. Both the Navy, officially the People’s Liberation Army Navy (PLAN) and the Air Force, officially the People’s Liberation Army Air Force (PLAAF) are nominally part of the PLA.

It is also ironic that these naval exercises will close a portion of the maritime commons to commercial traffic, also known as Sea Lines of Communication (SLOC), articulated by Alfred Thayer Mahan, of the U.S. Naval War College.

The PLA Navy’s North Sea Fleet and the Shandong Maritime Safety Administration announced in the past two days that the central part of the Yellow Sea would be cordoned off to all marine traffic from Thursday for military purposes. An area of about 40,000 square kilometres off the coastal city of Qingdao, where the North Sea Fleet is headquartered, was expected to be affected by the drill, which would involve live ammunition, Weihai Evening Post reported on Wednesday. [Korea Times]

A US Marine Corps F-35B Lightning II VFMA 121 refuels using a KC-130J Hercules with VMGR 152 during Aviation Delivered Ground Refueling training at MCAS Iwakuni, Japan, on 11 April. The technique will increase the STOVL fighter’s ability to refuel in austere locations when other resources may not be available. [USMC]

The US Marine Corps (USMC) has deployed the F-35B to their forward operating base in Iwakuni Japan, and continues to innovate with their doctrine and Concepts Of Operation (CONOPS), as previously reported in this blog. This stealth strike fighter capability, on the relative doorstep of North Korea, and also relatively difficult to reprisal strikes from North Korea, seems to be one of the strongest deterrent forces.

More to follow on the on-going F-35 debate, as retired Marine Lt. Col. David Berke (also previously quoted in this blog), and Pierre Sprey go head to head on the topic in an Aviation Week podcast.