Tag Fifth Generation aircraft

Is The End Of Stealth Neigh?

Lockheed Martin F-22 Raptor [Creative Commons]

Michael Peck made an interesting catch over at The National Interest. The Defense Advanced Research Projects Agency (DARPA) is soliciting input on potentially disruptive technologies for future warfare. With regard to air warfare, the solicitation baldy states, “Platform stealth may be approaching physical limits.” This led Peck to ask “Did the Pentagon just admit that stealth technology may not work anymore?

A couple of years ago, a media report that the Chinese had claimed a technological breakthrough in stealth-busting quantum radar capabilities led me to muse about the possible repercussions on U.S. military capabilities. This was during the height of the technology-rooted Third Offset Strategy mania. It seemed to me at the time that concentrating on technological solutions to the U.S.’s strategic challenges might not be the wisest course of action.

The notion that stealth might be a wasting asset seemed somewhat far-fetched when I wrote that, but it appears to have become a much more serious concern. As the DARPA solicitation states, “Our acquisition system is finding it difficult to respond on relevant timescales to adversary progress, which has made the search for next generation capabilities at once more urgent and more futile.” (p. 5)

Er, yikes.

Air Combat And Technology

Any model of air combat needs to address the effect of weapons on the opposing forces.  In the Dupuy Air Combat Model (DACM), this was rifled bullets fired from machine guns, as well as small caliber cannon in the 20-30 millimeter (mm) class.  Such was the state of air combat in World War II.  This page is an excellent, in-depth analysis of the fighter guns and cannon.  Of course, technology has effects beyond firepower.  One of the most notable technologies to go into active use during World War II was radar, contributing to the effectiveness of the Royal Air Force (RAF), successfully holding off the Wehrmacht’s Luftwaffe in the Battle of Britain.

Since that time, driven by “great power competition”, technology continues to advance the art of warfare in the air.  This happened in several notable stages during the Cold War, and was on display in subsequent contemporary conflicts when client or proxy states fought on behalf of the great powers.  Examples include well-known conflicts, such as the Korean and Vietnam conflicts, but also the conflicts between the Arabs and Israelis.  In the Korean War, archives now illustrate than Russian pilots secretly flew alongside North Korean and Chinese pilots against the allied forces.

Stages in technology are often characterized by generation.  Many of the features that are associated with the generations are driven by the Cold War arms race, and the back and forth development cycles and innovation cycles by the aircraft designers.  This was evident in comments by Aviation Week’s Bill Sweetman, remarking that the Jas-39 Grippen is actually a sixth generation fighter, based upon the alternative focus on maintainability, operability from short runways / austere airbases (or roadways!), the focus on cost reduction, but most importantly, software: “The reason that the JAS 39E may earn a Gen 6 tag is that it has been designed with these issues in mind. Software comes first: The new hardware runs Mission System 21 software, the latest roughly biennial release in the series that started with the JAS 39A/B.”

Upon close inspection of the DACM parameters, we can observe a few important data elements and metadata definitions: avionics (aka software & hardware), and sensor performance.  Those two are about data and information.  A concise method to assign values to these parameters is needed.  The U.S. Air Force (USAF) Air Combat Command (ACC) has used the generation of fighters as a proxy for this in the past, at least at a notional level:

[Source: 5th Generation Fighters, Lt Gen Hawk Carlisle, USAF ACC]

The Fleet Series game that has been reviewed in previous posts has a different method.  The Air-to-Air Combat Resolution Table does not seem to resonate well, as the damage effects are imposed against either one side or the other.  This does not jive with the stated concerns of the USAF, which has been worried about an exchange in which both Red and Blue forces are destroyed or eliminated in a mutual fashion, with a more or less one-for-one exchange ratio.

The Beyond Visual Range (BVR) version, named Long Range Air-to-Air (LRAA) combat in Asian Fleet, is a better model of this, in which each side rolls a die to determine the effect of long range missiles, and each side may take losses on non-stealthy units, as the stealthy units are immune to damage at BVR.

One important factor that the Fleet Series combat process does resolve is a solid determination of which side “holds” the airspace, and this is capable of using other support aircraft, such as AWACS, tankers, reconnaissance, etc.  Part of this determination is the relative morale of the opposing forces.  These effects have been clearly evident in air campaigns such as the strategic bombing campaign on Germany and Japan in the latter portion of World War II.

Dealing with this conundrum, I decided to relax by watching some dogfight videos on YouTube, Dogfights Greatest Air Battles, and this was rather entertaining, it included a series of engagements in aerial combat, taken from the exploits of American aces over the course of major wars:

  1. Eddie Rickenbacker, flying a Spad 13 in World War I,
  2. Clarence Emil “Bud” Anderson, flying a P-51B “Old Crow” in European skies during World War II, flying 67 missions in P-51Ds, 35 missions in F-80s and 121 missions in F-86s. He wrote “No Guts, No Glory,” a how to manual with lots of graphics of named maneuvers like the “Scissors.”
  3. Frederick Corbin “Boots” Blesse, flying a F-86 Sabre in “MiG Alley” in North Korea close to the Chinese border,
  4. Several engagements and interviews of aces from the Vietnam War:
    1. Steve Ritchie, who said “Surprise is a key element.” Previously discussed.
    2. Robin Olds – a triple ace in both WWII (P-38 and P-51) and Vietnam (F-4), and the mastermind of Operation Bolo, a fantastic application of deception.
    3. Randy “Duke” Cunningham and William P “Irish” Discol, flying an F-4 Phantom, “Showtime 100”, and up against North Vietnamese MiG-17s.

An interesting paraphrase by Cunningham of Manfred von Richthofen, the Red Baron’s statement: “When he sees the enemy, he attacks and kills, everything else is rubbish.”  What Richthofen said (according to skygod.com), was “The duty of the fighter pilot is to patrol his area of the sky, and shoot down any enemy fighters in that area. Anything else is rubbish.” Richtofen would not let members of his Staffel strafe troops in the trenches.

The list above is a great reference, and it got me to consider an alternative form of generation, including the earlier wars, and the experiences gained in those wars.  Indeed, we can press on in time to include the combat performance of the US and Allied militaries in the first Gulf War, 1990, as previously discussed.

There was a reference to the principles of aerial combat, such as the Dicta Boelcke:

  1. Secure the benefits of aerial combat (speed, altitude, numerical superiority, position) before attacking. Always attack from the sun.
  2. If you start the attack, bring it to an end.
  3. Fire the machine gun up close and only if you are sure to target your opponent.
  4. Do not lose sight of the enemy.
  5. In any form of attack, an approach to the opponent from behind is required.
  6. If the enemy attacks you in a dive, do not try to dodge the attack, but turn to the attacker.
  7. If you are above the enemy lines, always keep your own retreat in mind.
  8. For squadrons: In principle attack only in groups of four to six. If the fight breaks up in noisy single battles, make sure that not many comrades pounce on an opponent.

Appendix A – my own attempt to classify the generations of jet aircraft, in an attempt to rationalize the numerous schemes … until I decided that it was a fool’s errand:

  • Generation Zero:
    • World War II, 1948 Arab Israeli conflict
    • Blue: Spitfire, P-51 Mustang,
    • Red: Bf-109, FW-190, Mitsubishi Zero/George
    • Propeller engines, machine guns & cannons
  • First Generation:
    • Korean War, China & Taiwan conflicts
    • Blue: F-86 Sabre,
    • Red: MiG-15, Me-262?
    • Jet engines, swept wings, machine guns & cannons, early air-to-air missiles
  • Second Generation –
    • 1967 and Cuban Missile Crisis
    • Blue: F-100, F-102, F-104, F-5, F-8
    • Grey: Mirage III, Mirage F1
    • Red: MiG-19, MiG-21
    • Multi-mach speeds, improved air-to-air missiles, but largely within-visual range (WVR), early radar warning receivers (RWR), early countermeasures.
  • Third Generation:
    • 1973 Arab Israeli Wars, Vietnam War
    • Blue: F-4 Phantom, F-111 Ardvark, F-106?
    • Grey: Mirage III
    • Red: MiG-23, MiG-25, Su-15
    • Look-down/Shoot-down capability, radar-guided missiles, Beyond Visual Range (BVR), Identification Friend or Foe (IFF), all-aspect infrared missiles.
  • Fourth Generation:
    • 1980’s Cold War, 1990 Gulf War, 1982 Lebanon, 1980-88 Iran-Iraq War
    • Blue: F-15 Eagle, F-16 Viper, F-14 Tomcat, F/A-18 Hornet
    • Grey: Mirage 2000
    • Red: MiG-29, MiG-31, Su-27/30
  • Fourth Plus Generation:
    • 2003 Gulf War, 2011 Libiya
    • Blue: F/A-18E/F Super Hornet, F-15 improved (F-15E, F-15I, F-15SG, F-15SK…)
    • Grey: Eurofighter Typhoon, Rafale
    • Red: Su-35S
  • Fifth Generation:
    • Marketing term used by aircraft producers
    • Blue: Adanced Tactical Fighter (ATF) = F-22 Raptor, Joint Strike Fighter (JSF) = F-35 Lightening II
    • Grey: Grippen?
    • Red: PAK-FA Su-57, J-20
  • Sixth Generation – the current frontier
    • Blue: Next Generation Air Dominance (NGAD) program, UAS ?
    • Red: ?
    • Grey: Two seat, Twin tail “drone-herder”?

TDI Friday Read: U.S. Airpower

[Image by Geopol Intelligence]

This weekend’s edition of TDI’s Friday Read is a collection of posts on the current state of U.S. airpower by guest contributor Geoffery Clark. The same factors changing the character of land warfare are changing the way conflict will be waged in the air. Clark’s posts highlight some of the way these changes are influencing current and future U.S. airpower plans and concepts.

F-22 vs. F-35: Thoughts On Fifth Generation Fighters

The F-35 Is Not A Fighter

U.S. Armed Forces Vision For Future Air Warfare

The U.S. Navy and U.S. Air Force Debate Future Air Superiority

U.S. Marine Corps Concepts of Operation with the F-35B

The State of U.S. Air Force Air Power

Fifth Generation Deterrence

 

Fifth Generation Deterrence

“Deterrence is the art of producing in the mind of the enemy… the FEAR to attack. And so, … the Doomsday machine is terrifying and simple to understand… and completely credible and convincing.” – Dr. Strangelove.

In a previous post, we looked at some aspects of the nuclear balance of power. In this Stpost, we will consider some aspects of conventional deterrence. Ironically, Chris Lawrence was cleaning out a box in his office (posted in this blog), which contained an important article for this debate, “The Case for More Effective, Less Expensive Weapons Systems: What ‘Quality Versus Quantity’ Issue?” by none other than Pierre M. Sprey, available here, published in 1982.

In comparing the F-15 and F-16, Sprey identifies four principal effectiveness characteristics that contribute to victory in air-to-air combat:

  1. Achieving surprise bounces and avoiding being surprised;
  2. Out-numbering the enemy in the air;
  3. Out-maneuvering the enemy to reach firing position (when surprise fails);
  4. Achieving reliable kills within the brief firing opportunities presented by combat.

“Surprise is the first because, in every air war since WWI, somewhere between 65% and 85% of all fighters shot down were unaware of their attacker.” Sprey mentions that the F-16 is superior to the F-15 due to the smaller size, and that fact that it smokes much less, both aspects that are clearly Within-Visual Range (WVR) combat considerations. Further, his discussion of Beyond Visual Range (BVR) combat is dismissive.

The F-15 has an apparently advantage inasmuch as it carries the Sparrow radar missile. On closer examination, this proves to be little or no advantage: in Vietnam, the Sparrow had a kill rate of .08 to .10, less that one third that of the AIM-9D/G — and the new models of the Sparrow do not appear to have corrected the major reasons for this disappointing performance; even worse, locking-on with the Sparrow destroys surprise because of the distinctive and powerful radar signature involved.

Sprey was right to criticize the performance of the early radar-guided missiles.  From “Trends in Air-to-Air Combat: Implications for Future Air Superiority,” page 10

From 1965 through 1968, during Operation Rolling Thunder, AIM-7 Sparrow missiles succeeded in downing their targets only 8 percent of the time and AIM-9 Sidewinders only 15 percent of the time. Pre-conflict testing indicated expected success rates of 71 and 65 percent respectively. Despite these problems, AAMs offered advantages over guns and accounted for the vast majority of U.S. air-to-air victories throughout the war.

Sprey seemed to miss out of the fact that the radar guided missile that supported BVR air combat was not something in the far distant future, but an evolution of radar and missile technology. Even in the 1980’s, the share of air-to-air combat victories by BVR missiles was on the rise, and since the 1990’s, it has become the most common way to shoot down an enemy aircraft.

In an Aviation Week podcast in July of this year, retired Marine Lt. Col. David Berke (also previously quoted in this blog), and Pierre Sprey debated the F-35. Therein, Sprey offers a formulaic definition of air power, as created by force and effectiveness, with force being a function of cost, reliability, and how often it can fly per day (sortie generation rate?). “To create air power, you have to put a bunch of airplanes in the sky over the enemy. You can’t do it with a tiny hand full, even if they are like unbelievably good. If you send six aircraft to China, they could care less what they are … F-22 deployments are now six aircraft.”

Berke counters with the ideas that he expressed before in his initial conversation with Aviation week (as analyzed in this blog), that information and situational awareness are by far the most important factor in aerial warfare. This stems from the advantage of surprise, which was Sprey’s first criteria in 1982, and remains a critical factor is warfare to this day. This reminds me a bit of Disraeli’s truism of “lies, damn lies and statistics”pick the metrics that tell your story, rather than objectively look at the data.

Critics beyond Mr. Sprey have said that high technology weapons like the F-22 and the F-35 are irrelevant for America’s wars; “the [F-22] was not relevant to the military’s operations in places like Iraq, Afghanistan and Libya — at least according to then-secretary of defense Robert Gates.” Indeed, according to the Washington Post, “Gates called the $65 billion fleet a ‘niche silver-bullet solution’ to a major aerial war threat that remains distant. … and has promised to urge President Obama to veto the military spending bill if the full Senate retains F-22 funding.”

The current conflict in Syria against ISIS, after the Russian deployment resulted in crowded and contested airspace, as evidenced by a NATO Turkish F-16 shoot down of a Russian Air Force Su-24 (wikipedia), and as reported on this blog. Indeed, ironically for Mr. Sprey’s analysis of the relative values of the AIM-9 vs the AIM-7 missiles, as again reported by this blog,

[T]he U.S. Navy F/A-18E Super Hornet locked onto a Su-22 Fitter at a range of 1.5 miles. It fired an AIM-9X heat-seeking Sidewinder missile at it. The Syrian pilot was able to send off flares to draw the missile away from the Su-22. The AIM-9X is not supposed to be so easily distracted. They had to shoot down the Su-22 with a radar guided AMRAAM missile.

For the record the AIM-7 was a direct technical predecessor of the AIM-120 AMRAAM. We can perhaps conclude that having more that one type of weapon is useful, especially as other air power nations are always trying to improve their counter measures, and this incident shows that they can do so effectively. Of course, more observations are necessary for statistical proof, but since air combat is so rare since the end of the Cold War, the opportunity to learn the lesson and improve the AIM-9X should not be squandered.

USAF Air Combat Dominance as Deterrent

Hence to fight and conquer in all your battles is not supreme excellence; supreme excellence consists in breaking the enemy’s resistance without fighting. – Sun Tzu

The admonition to win without fighting is indeed a timeless principle of warfare, and it is clearly illustrated through this report on the performance of the F-22 in the war against ISIS, over the crowded airspace in Syria, from Aviation Week on June 4th, 2017.  I’ve quoted at length, and applied emphasis.

Shell, a U.S. Air Force lieutenant colonel and Raptor squadron commander who spoke on the condition that Aviation Week identify him only by his call sign, and his squadron of stealth F-22 Lockheed Martin Raptors had a critical job to do: de-conflict coalition operations over Syria with an irate Russia.

… one of the most critical missions the F-22 conducts in the skies over Syria, particularly in the weeks following the April 6 Tomahawk strike, is de-confliction between coalition and non-coalition aircraft, says Shell. … the stealth F-22’s ability to evade detection gives it a unique advantage in getting non-coalition players to cooperate, says Shell. 

‘It is easier to bring air dominance to bear if you know where the other aircraft are that you are trying to influence, and they don’t know where you are,’ says Shell. ‘When other airplanes don’t know where you are, their sense of comfort goes down, so they have a tendency to comply more.

… U.S. and non-coalition aircraft were still communicating directly, over an internationally recognized, unsecure frequency often used for emergencies known as ‘Guard,’  says Shell. His F-22s acted as a kind of quarterback, using high-fidelity sensors to determine the positions of all the actors on the battlefield, directing non-coalition aircraft where to fly and asking them over the Guard frequency to move out of the way. 

The Raptors were able to fly in contested areas, in range of surface-to-air missile systems and fighters, without the non-coalition players knowing their exact positions, Shell says. This allowed them to establish air superiority—giving coalition forces freedom of movement in the air and on the ground—and a credible deterrent.

Far from being a silver bullet solution for a distant aerial war, America’s stealth fighters are providing credible deterrence on the front lines today. They have achieved in some cases, the ultimate goal of winning without fighting, by exploiting the advantage of surprise. The right question might be, how many are required for this mission, given the enormous costs of fifth generation fighters? (more on this later).  As a quarterback, the F-22 can support many allied units, as part of a larger team.

Giving credit where it is due, Mr. Sprey has rightly stated in his Aviation Week interview, “cost is part of the force you can bring to bear upon the enemy.”  His mechanism to compute air power in 2017, however, seems to ignore the most important aspect of air power since it first emerged in World War I, surprise.  His dogmatic focus on the lightweight, single purpose air-to-air fighter, which seems to shun even available, proven technology seems clear.

The U.S. Navy and U.S. Air Force Debate Future Air Superiority

F-35C of Strike Fighter Squadron 101 (VFA-101) flies in formation with a Boeing F/A-18F Super Hornet of VFA-122 near Eglin Air Force Base, Florida (USA) on 22 June 2013. (USAF via Wikimedia)

The U.S. Navy (USN) and U.S. Air Force (USAF) are concerned about the ability to achieve and retain air superiority in future conflicts. In 2008, with the F-35 program underway, the USN issued a new requirement for an air superiority platform, the F/A-XX. The USAF, looking at its small fleet of F-22 Raptors–187 total, 125 combat-ready–and the status of the F-35 program, kicked off its own F-X program or Next-Generation Air Dominance (NGAD) in 2012.

In 2015, Frank Kendall, the Pentagon’s “acquisition czar” combined these two programs into Penetrating Counter-Air (PCA) to be run by the Defense Advanced Research Projects Agency (DARPA). This means that some basic requirements will need to be agreed upon, such as stealth or low-observable characteristics. The USN and USAF have some differing viewpoints on this particular topic.

USAF Air Combat Command (ACC) chief Gen. Herbert “Hawk” Carlisle says stealth will be “incredibly important” for the F-X aircraft that the USAF is pursuing as an eventual F-22 replacement. This viewpoint is reinforced by statements that the USAF’s fourth-generation fighters, F-14, F-15, F-16, and F-18, are “obsolete” even after upgrade, and “they simply will not survive” against the threats of the future, such as anti-access/area-denial (A2/AD) capabilities.

Meanwhile, USN Chief of Naval Operations Adm. Jonathan Greenert, has said that “stealth may be over-rated.” In a speech at the Office of Naval Research Naval Future Force Science and Technology Expo in Washington, D.C., Greenert said “I don’t want to necessarily say that it’s over, but let’s face it, if something moves fast through the air and disrupts molecules in the air and puts out heat–I don’t care how cool the engine can be–it’s going to be detectable.”

Aviation Week detailed these advances in counter-stealth capability, including both radars and Infra-Red Search and Track (IRST):

U.S. Air Force is the latest convert to the capabilities of IRST. The U.S. Navy’s IRST for the Super Hornet, installed in a modified centerline fuel tank, was approved for low-rate initial production in February, following 2014 tests of an engineering development model system, and the Block I version is due to reach initial operational capability in fiscal 2018. Block I uses the same Lockheed Martin infrared receiver—optics and front end—as is used on F-15Ks in Korea and F-15SGs in Singapore. This subsystem is, in turn, derived from the IRST that was designed in the 1980s for the F-14D. 

While the Pentagon’s director of operational test and engineering criticized the Navy system’s track quality, it has clearly impressed the Air Force enough to overcome its long lack of interest in IRST. The Air Force has also gained experience via its F-16 Aggressor units, which have been flying with IRST pods since 2013. The Navy plans to acquire only 60 Block I sensors, followed by 110 Block II systems with a new front end.

The bulk of Western IRST experience is held by Selex-ES, which is the lead contractor on the Typhoon’s Pirate IRST and the supplier of the Skyward-G for Gripen. In the past year, Selex has claimed openly that its IRSTs have been able to detect and track low-RCS targets at subsonic speeds, due to skin friction, heat radiating through the skin from the engine, and the exhaust plume.

Are Fourth and Fifth Generation Fighters Comparable?

Then on 21 December 2016, in the middle of this ongoing debate, president-elect Donald Trump tweeted: “Based on the tremendous cost and cost overruns of the Lockheed Martin F-35, I have asked Boeing to price-out a comparable F-18 Super Hornet!”

Many have asked, can an upgrade to a “legacy” fighter like the Super Hornet be comparable to a fifth-generation fighter like the F-35? Some have said that an advanced Super Hornet is an “Impossible Magic Fantasy Jet.” Others flatly state “No, Mr. Trump, You Can’t Replace F-35 With A ‘Comparable’ F-18.” More eloquently stated: “In this modern era of stealth combat, there are two kinds of fighters. Stealth fighters and targets.”

The manufacturers of the two aircraft mentioned in Trump’s tweet have been debating this topic over the past few years. In 2014, Boeing questioned the relative capabilities of the F-35C and the E/F-18G “Growler”, an electronic attack variant of the Super Hornet. “Stealth is perishable; only a Growler provides full spectrum protection.”

Indeed, that same year, Boeing developed an Advanced Super Hornet. The idea was basically to enclose the weapons that current Super Hornets sling beneath their wings into a low-observable pod and thus bring the overall radar cross section (RCS) i.e. the main metric of stealth, down to a level that would provide some of the penetration capability that a fifth generation fighter enjoys.

F/A-18 XT Block III Advanced Super Hornet [GlobalSecurity.org]

The current version of the advanced Super Hornet has “matured” after additional conversation with their primary customer, and low-observability has taken a less important role than range, payload, and battle-network capability. Indeed, Mr. Trump responded “We are looking seriously at a big order.”

For the USN, the F-35 seems to have evolved from a strike fighter into a platform for command, control, communications, computers, intelligence, reconnaissance and surveillance (C4ISR). This is an important role to play, undoubtedly, but it may mean fewer F-35Cs on carrier decks, which puts more money back into the pocket of the USN for other purposes.

Boeing’s sixth-generation fighter concept. Notable features are the optionality of the pilot, the lack of visibility from the cockpit which indicates some sort of “distributed aperture system” a la the F-35, and lack of a tail, which might limit air combat maneuverability. [Aviation Week]

Of course, Lockheed is not resting still – they’ve recently demonstrated a manned and unmanned teaming capability, working with the Air Force Research Laboratory.

What both companies and both services state publicly must be taken in the context of politics and business, as they are in constant competition, both with each other and potential opponents. This is a natural way to come up with good concepts, good options, and a good price.

More on autonomous capabilities to follow.